Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.autograd import Variable | |
from utils.box_utils import match, log_sum_exp | |
from data import cfg_mnet | |
GPU = cfg_mnet['gpu_train'] | |
class MultiBoxLoss(nn.Module): | |
"""SSD Weighted Loss Function | |
Compute Targets: | |
1) Produce Confidence Target Indices by matching ground truth boxes | |
with (default) 'priorboxes' that have jaccard index > threshold parameter | |
(default threshold: 0.5). | |
2) Produce localization target by 'encoding' variance into offsets of ground | |
truth boxes and their matched 'priorboxes'. | |
3) Hard negative mining to filter the excessive number of negative examples | |
that comes with using a large number of default bounding boxes. | |
(default negative:positive ratio 3:1) | |
Objective Loss: | |
L(x,c,l,g) = (Lconf(x, c) + αLloc(x,l,g)) / N | |
Where, Lconf==the CrossEntropy Loss and Lloc==the SmoothL1 Loss | |
weighted by α which==set to 1 by cross val. | |
Args: | |
c: class confidences, | |
l: predicted boxes, | |
g: ground truth boxes | |
N: number of matched default boxes | |
See: https://arxiv.org/pdf/1512.02325.pdf for more details. | |
""" | |
def __init__(self, num_classes, overlap_thresh, prior_for_matching, bkg_label, neg_mining, neg_pos, neg_overlap, encode_target): | |
super(MultiBoxLoss, self).__init__() | |
self.num_classes = num_classes | |
self.threshold = overlap_thresh | |
self.background_label = bkg_label | |
self.encode_target = encode_target | |
self.use_prior_for_matching = prior_for_matching | |
self.do_neg_mining = neg_mining | |
self.negpos_ratio = neg_pos | |
self.neg_overlap = neg_overlap | |
self.variance = [0.1, 0.2] | |
def forward(self, predictions, priors, targets): | |
"""Multibox Loss | |
Args: | |
predictions (tuple): A tuple containing loc preds, conf preds, | |
and prior boxes from SSD net. | |
conf shape: torch.size(batch_size,num_priors,num_classes) | |
loc shape: torch.size(batch_size,num_priors,4) | |
priors shape: torch.size(num_priors,4) | |
ground_truth (tensor): Ground truth boxes and labels for a batch, | |
shape: [batch_size,num_objs,5] (last idx==the label). | |
""" | |
loc_data, conf_data, landm_data = predictions | |
priors = priors | |
num = loc_data.size(0) | |
num_priors = (priors.size(0)) | |
# match priors (default boxes) and ground truth boxes | |
loc_t = torch.Tensor(num, num_priors, 4) | |
landm_t = torch.Tensor(num, num_priors, 10) | |
conf_t = torch.LongTensor(num, num_priors) | |
for idx in range(num): | |
truths = targets[idx][:, :4].data | |
labels = targets[idx][:, -1].data | |
landms = targets[idx][:, 4:14].data | |
defaults = priors.data | |
match(self.threshold, truths, defaults, self.variance, labels, landms, loc_t, conf_t, landm_t, idx) | |
if GPU: | |
loc_t = loc_t.cuda() | |
conf_t = conf_t.cuda() | |
landm_t = landm_t.cuda() | |
zeros = torch.tensor(0).cuda() | |
# landm Loss (Smooth L1) | |
# Shape: [batch,num_priors,10] | |
pos1 = conf_t > zeros | |
num_pos_landm = pos1.long().sum(1, keepdim=True) | |
N1 = max(num_pos_landm.data.sum().float(), 1) | |
pos_idx1 = pos1.unsqueeze(pos1.dim()).expand_as(landm_data) | |
landm_p = landm_data[pos_idx1].view(-1, 10) | |
landm_t = landm_t[pos_idx1].view(-1, 10) | |
loss_landm = F.smooth_l1_loss(landm_p, landm_t, reduction='sum') | |
pos = conf_t != zeros | |
conf_t[pos] = 1 | |
# Localization Loss (Smooth L1) | |
# Shape: [batch,num_priors,4] | |
pos_idx = pos.unsqueeze(pos.dim()).expand_as(loc_data) | |
loc_p = loc_data[pos_idx].view(-1, 4) | |
loc_t = loc_t[pos_idx].view(-1, 4) | |
loss_l = F.smooth_l1_loss(loc_p, loc_t, reduction='sum') | |
# Compute max conf across batch for hard negative mining | |
batch_conf = conf_data.view(-1, self.num_classes) | |
loss_c = log_sum_exp(batch_conf) - batch_conf.gather(1, conf_t.view(-1, 1)) | |
# Hard Negative Mining | |
loss_c[pos.view(-1, 1)] = 0 # filter out pos boxes for now | |
loss_c = loss_c.view(num, -1) | |
_, loss_idx = loss_c.sort(1, descending=True) | |
_, idx_rank = loss_idx.sort(1) | |
num_pos = pos.long().sum(1, keepdim=True) | |
num_neg = torch.clamp(self.negpos_ratio*num_pos, max=pos.size(1)-1) | |
neg = idx_rank < num_neg.expand_as(idx_rank) | |
# Confidence Loss Including Positive and Negative Examples | |
pos_idx = pos.unsqueeze(2).expand_as(conf_data) | |
neg_idx = neg.unsqueeze(2).expand_as(conf_data) | |
conf_p = conf_data[(pos_idx+neg_idx).gt(0)].view(-1,self.num_classes) | |
targets_weighted = conf_t[(pos+neg).gt(0)] | |
loss_c = F.cross_entropy(conf_p, targets_weighted, reduction='sum') | |
# Sum of losses: L(x,c,l,g) = (Lconf(x, c) + αLloc(x,l,g)) / N | |
N = max(num_pos.data.sum().float(), 1) | |
loss_l /= N | |
loss_c /= N | |
loss_landm /= N1 | |
return loss_l, loss_c, loss_landm | |