''' @paper: GAN Prior Embedded Network for Blind Face Restoration in the Wild (CVPR2021) @author: yangxy (yangtao9009@gmail.com) ''' import torch import os import cv2 import glob import numpy as np from torch import nn import torch.nn.functional as F from torchvision import transforms, utils from model import FullGenerator, FullGenerator_SR class FaceGAN(object): def __init__(self, base_dir='./', size=512, out_size=None, model=None, channel_multiplier=2, narrow=1, key=None, is_norm=True, device='cuda'): self.mfile = os.path.join(base_dir, 'weights', model+'.pth') self.n_mlp = 8 self.device = device self.is_norm = is_norm self.in_resolution = size self.out_resolution = size if out_size==None else out_size self.key = key self.load_model(channel_multiplier, narrow) def load_model(self, channel_multiplier=2, narrow=1): if self.in_resolution == self.out_resolution: self.model = FullGenerator(self.in_resolution, 512, self.n_mlp, channel_multiplier, narrow=narrow, device=self.device) else: self.model = FullGenerator_SR(self.in_resolution, self.out_resolution, 512, self.n_mlp, channel_multiplier, narrow=narrow, device=self.device) pretrained_dict = torch.load(self.mfile, map_location=torch.device('cpu')) if self.key is not None: pretrained_dict = pretrained_dict[self.key] self.model.load_state_dict(pretrained_dict) self.model.to(self.device) self.model.eval() def process(self, img): img = cv2.resize(img, (self.in_resolution, self.in_resolution)) img_t = self.img2tensor(img) with torch.no_grad(): out, __ = self.model(img_t) out = self.tensor2img(out) return out def img2tensor(self, img): img_t = torch.from_numpy(img).to(self.device)/255. if self.is_norm: img_t = (img_t - 0.5) / 0.5 img_t = img_t.permute(2, 0, 1).unsqueeze(0).flip(1) # BGR->RGB return img_t def tensor2img(self, img_t, pmax=255.0, imtype=np.uint8): if self.is_norm: img_t = img_t * 0.5 + 0.5 img_t = img_t.squeeze(0).permute(1, 2, 0).flip(2) # RGB->BGR img_np = np.clip(img_t.float().cpu().numpy(), 0, 1) * pmax return img_np.astype(imtype)