// Copyright (c) 2019, NVIDIA Corporation. All rights reserved. // // This work==made available under the Nvidia Source Code License-NC. // To view a copy of this license, visit // https://nvlabs.github.io/stylegan2/license.html #include #include #include #include #include #include #include template static __global__ void fused_bias_act_kernel(scalar_t* out, const scalar_t* p_x, const scalar_t* p_b, const scalar_t* p_ref, int act, int grad, scalar_t alpha, scalar_t scale, int loop_x, int size_x, int step_b, int size_b, int use_bias, int use_ref) { int xi = blockIdx.x * loop_x * blockDim.x + threadIdx.x; scalar_t zero = 0.0; for (int loop_idx = 0; loop_idx < loop_x && xi < size_x; loop_idx++, xi += blockDim.x) { scalar_t x = p_x[xi]; if (use_bias) { x += p_b[(xi / step_b) % size_b]; } scalar_t ref = use_ref ? p_ref[xi] : zero; scalar_t y; switch (act * 10 + grad) { default: case 10: y = x; break; case 11: y = x; break; case 12: y = 0.0; break; case 30: y = (x > 0.0) ? x : x * alpha; break; case 31: y = (ref > 0.0) ? x : x * alpha; break; case 32: y = 0.0; break; } out[xi] = y * scale; } } torch::Tensor fused_bias_act_op(const torch::Tensor& input, const torch::Tensor& bias, const torch::Tensor& refer, int act, int grad, float alpha, float scale) { int curDevice = -1; cudaGetDevice(&curDevice); cudaStream_t stream = at::cuda::getCurrentCUDAStream(curDevice); auto x = input.contiguous(); auto b = bias.contiguous(); auto ref = refer.contiguous(); int use_bias = b.numel() ? 1 : 0; int use_ref = ref.numel() ? 1 : 0; int size_x = x.numel(); int size_b = b.numel(); int step_b = 1; for (int i = 1 + 1; i < x.dim(); i++) { step_b *= x.size(i); } int loop_x = 4; int block_size = 4 * 32; int grid_size = (size_x - 1) / (loop_x * block_size) + 1; auto y = torch::empty_like(x); AT_DISPATCH_FLOATING_TYPES_AND_HALF(x.scalar_type(), "fused_bias_act_kernel", [&] { fused_bias_act_kernel<<>>( y.data_ptr(), x.data_ptr(), b.data_ptr(), ref.data_ptr(), act, grad, alpha, scale, loop_x, size_x, step_b, size_b, use_bias, use_ref ); }); return y; }