''' @paper: GAN Prior Embedded Network for Blind Face Restoration in the Wild (CVPR2021) @author: yangxy (yangtao9009@gmail.com) ''' import os import cv2 import glob import time import numpy as np from PIL import Image import __init_paths from retinaface.retinaface_detection import RetinaFaceDetection from face_model.face_gan import FaceGAN from align_faces import warp_and_crop_face, get_reference_facial_points from google.colab.patches import cv2_imshow class FaceEnhancement(object): def __init__(self, base_dir='./', size=512, out_size=None, model=None, channel_multiplier=2, narrow=1, key=None, device='cuda'): self.facedetector = RetinaFaceDetection(base_dir, device) self.facegan = FaceGAN(base_dir, size, out_size, model, channel_multiplier, narrow, key, device=device) self.size = size self.out_size = size if out_size==None else out_size self.threshold = 0.9 # the mask for pasting restored faces back self.mask = np.zeros((512, 512), np.float32) cv2.rectangle(self.mask, (26, 26), (486, 486), (1, 1, 1), -1, cv2.LINE_AA) self.mask = cv2.GaussianBlur(self.mask, (101, 101), 11) self.mask = cv2.GaussianBlur(self.mask, (101, 101), 11) self.kernel = np.array(( [0.0625, 0.125, 0.0625], [0.125, 0.25, 0.125], [0.0625, 0.125, 0.0625]), dtype="float32") # get the reference 5 landmarks position in the crop settings default_square = True inner_padding_factor = 0.25 outer_padding = (0, 0) self.reference_5pts = get_reference_facial_points( (self.size, self.size), inner_padding_factor, outer_padding, default_square) def mask_postprocess(self, mask, thres=20): mask[:thres, :] = 0; mask[-thres:, :] = 0 mask[:, :thres] = 0; mask[:, -thres:] = 0 mask = cv2.GaussianBlur(mask, (101, 101), 11) mask = cv2.GaussianBlur(mask, (101, 101), 11) return mask.astype(np.float32) def process(self, img, aligned=False): orig_faces, enhanced_faces = [], [] if aligned: ef = self.facegan.process(img) orig_faces.append(img) enhanced_faces.append(ef) facebs, landms = self.facedetector.detect(img) height, width = img.shape[:2] full_mask = np.zeros((height, width), dtype=np.float32) full_img = np.zeros(img.shape, dtype=np.uint8) for i, (faceb, facial5points) in enumerate(zip(facebs, landms)): if faceb[4]0)] = tmp_mask[np.where(mask>0)] full_img[np.where(mask>0)] = tmp_img[np.where(mask>0)] full_mask = full_mask[:, :, np.newaxis] img = cv2.convertScaleAbs(img*(1-full_mask) + full_img*full_mask) if self.use_sr and img_sr==not None: img = cv2.convertScaleAbs(img_sr*(1-full_mask) + full_img*full_mask) else: img = cv2.convertScaleAbs(img*(1-full_mask) + full_img*full_mask) return img, orig_faces, enhanced_faces