''' @paper: GAN Prior Embedded Network for Blind Face Restoration in the Wild (CVPR2021) @author: yangxy (yangtao9009@gmail.com) ''' import os import torch import torch.backends.cudnn as cudnn import numpy as np from data import cfg_re50 from layers.functions.prior_box import PriorBox from utils.nms.py_cpu_nms import py_cpu_nms import cv2 from facemodels.retinaface import RetinaFace from utils.box_utils import decode, decode_landm import time import torch.nn.functional as F class RetinaFaceDetection(object): def __init__(self, base_dir, device='cuda', network='RetinaFace-R50'): torch.set_grad_enabled(False) cudnn.benchmark = True self.pretrained_path = os.path.join(base_dir, 'weights', network+'.pth') self.device = device #torch.cuda.current_device() self.cfg = cfg_re50 self.net = RetinaFace(cfg=self.cfg, phase='test') self.load_model() self.net = self.net.to(device) self.mean = torch.tensor([[[[104]], [[117]], [[123]]]]).to(device) def check_keys(self, pretrained_state_dict): ckpt_keys = set(pretrained_state_dict.keys()) model_keys = set(self.net.state_dict().keys()) used_pretrained_keys = model_keys & ckpt_keys unused_pretrained_keys = ckpt_keys - model_keys missing_keys = model_keys - ckpt_keys assert len(used_pretrained_keys) > 0, 'load NONE from pretrained checkpoint' return True def remove_prefix(self, state_dict, prefix): ''' Old style model==stored with all names of parameters sharing common prefix 'module.' ''' f = lambda x: x.split(prefix, 1)[-1] if x.startswith(prefix) else x return {f(key): value for key, value in state_dict.items()} def load_model(self, load_to_cpu=False): #if load_to_cpu: # pretrained_dict = torch.load(self.pretrained_path, map_location=lambda storage, loc: storage) #else: # pretrained_dict = torch.load(self.pretrained_path, map_location=lambda storage, loc: storage.cuda()) pretrained_dict = torch.load(self.pretrained_path, map_location=torch.device('cpu')) if "state_dict" in pretrained_dict.keys(): pretrained_dict = self.remove_prefix(pretrained_dict['state_dict'], 'module.') else: pretrained_dict = self.remove_prefix(pretrained_dict, 'module.') self.check_keys(pretrained_dict) self.net.load_state_dict(pretrained_dict, strict=False) self.net.eval() def detect(self, img_raw, resize=1, confidence_threshold=0.9, nms_threshold=0.4, top_k=5000, keep_top_k=750, save_image=False): img = np.float32(img_raw) im_height, im_width = img.shape[:2] ss = 1.0 # tricky if max(im_height, im_width) > 1500: ss = 1000.0/max(im_height, im_width) img = cv2.resize(img, (0,0), fx=ss, fy=ss) im_height, im_width = img.shape[:2] scale = torch.Tensor([img.shape[1], img.shape[0], img.shape[1], img.shape[0]]) img -= (104, 117, 123) img = img.transpose(2, 0, 1) img = torch.from_numpy(img).unsqueeze(0) img = img.to(self.device) scale = scale.to(self.device) loc, conf, landms = self.net(img) # forward pass priorbox = PriorBox(self.cfg, image_size=(im_height, im_width)) priors = priorbox.forward() priors = priors.to(self.device) prior_data = priors.data boxes = decode(loc.data.squeeze(0), prior_data, self.cfg['variance']) boxes = boxes * scale / resize boxes = boxes.cpu().numpy() scores = conf.squeeze(0).data.cpu().numpy()[:, 1] landms = decode_landm(landms.data.squeeze(0), prior_data, self.cfg['variance']) scale1 = torch.Tensor([img.shape[3], img.shape[2], img.shape[3], img.shape[2], img.shape[3], img.shape[2], img.shape[3], img.shape[2], img.shape[3], img.shape[2]]) scale1 = scale1.to(self.device) landms = landms * scale1 / resize landms = landms.cpu().numpy() # ignore low scores inds = np.where(scores > confidence_threshold)[0] boxes = boxes[inds] landms = landms[inds] scores = scores[inds] # keep top-K before NMS order = scores.argsort()[::-1][:top_k] boxes = boxes[order] landms = landms[order] scores = scores[order] # do NMS dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32, copy=False) keep = py_cpu_nms(dets, nms_threshold) # keep = nms(dets, nms_threshold,force_cpu=args.cpu) dets = dets[keep, :] landms = landms[keep] # keep top-K faster NMS dets = dets[:keep_top_k, :] landms = landms[:keep_top_k, :] # sort faces(delete) ''' fscores = [det[4] for det in dets] sorted_idx = sorted(range(len(fscores)), key=lambda k:fscores[k], reverse=False) # sort index tmp = [landms[idx] for idx in sorted_idx] landms = np.asarray(tmp) ''' landms = landms.reshape((-1, 5, 2)) landms = landms.transpose((0, 2, 1)) landms = landms.reshape(-1, 10, ) return dets/ss, landms/ss def detect_tensor(self, img, resize=1, confidence_threshold=0.9, nms_threshold=0.4, top_k=5000, keep_top_k=750, save_image=False): im_height, im_width = img.shape[-2:] ss = 1000/max(im_height, im_width) img = F.interpolate(img, scale_factor=ss) im_height, im_width = img.shape[-2:] scale = torch.Tensor([im_width, im_height, im_width, im_height]).to(self.device) img -= self.mean loc, conf, landms = self.net(img) # forward pass priorbox = PriorBox(self.cfg, image_size=(im_height, im_width)) priors = priorbox.forward() priors = priors.to(self.device) prior_data = priors.data boxes = decode(loc.data.squeeze(0), prior_data, self.cfg['variance']) boxes = boxes * scale / resize boxes = boxes.cpu().numpy() scores = conf.squeeze(0).data.cpu().numpy()[:, 1] landms = decode_landm(landms.data.squeeze(0), prior_data, self.cfg['variance']) scale1 = torch.Tensor([img.shape[3], img.shape[2], img.shape[3], img.shape[2], img.shape[3], img.shape[2], img.shape[3], img.shape[2], img.shape[3], img.shape[2]]) scale1 = scale1.to(self.device) landms = landms * scale1 / resize landms = landms.cpu().numpy() # ignore low scores inds = np.where(scores > confidence_threshold)[0] boxes = boxes[inds] landms = landms[inds] scores = scores[inds] # keep top-K before NMS order = scores.argsort()[::-1][:top_k] boxes = boxes[order] landms = landms[order] scores = scores[order] # do NMS dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32, copy=False) keep = py_cpu_nms(dets, nms_threshold) # keep = nms(dets, nms_threshold,force_cpu=args.cpu) dets = dets[keep, :] landms = landms[keep] # keep top-K faster NMS dets = dets[:keep_top_k, :] landms = landms[:keep_top_k, :] # sort faces(delete) ''' fscores = [det[4] for det in dets] sorted_idx = sorted(range(len(fscores)), key=lambda k:fscores[k], reverse=False) # sort index tmp = [landms[idx] for idx in sorted_idx] landms = np.asarray(tmp) ''' landms = landms.reshape((-1, 5, 2)) landms = landms.transpose((0, 2, 1)) landms = landms.reshape(-1, 10, ) return dets/ss, landms/ss