File size: 10,805 Bytes
3a6f1f2
 
c8f8b0e
3a6f1f2
 
c8f8b0e
87c57a3
 
 
 
 
 
 
 
5f57808
3a6f1f2
 
 
 
87c57a3
3a6f1f2
 
5f57808
3faa99b
3a6f1f2
c8f8b0e
 
87c57a3
 
3a6f1f2
 
 
 
 
 
 
 
 
 
 
 
 
 
c8f8b0e
 
 
 
 
 
 
 
 
 
 
87c57a3
 
 
c8f8b0e
 
3a6f1f2
c8f8b0e
 
3a6f1f2
 
 
 
 
 
 
 
 
 
c8f8b0e
3a6f1f2
 
 
c8f8b0e
3a6f1f2
 
 
 
 
 
 
 
 
 
 
 
 
c8f8b0e
 
 
 
 
 
 
 
 
 
3a6f1f2
 
 
 
 
c8f8b0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a6f1f2
c8f8b0e
 
 
 
 
 
 
 
 
3a6f1f2
 
 
 
 
 
 
c8f8b0e
 
 
 
 
 
 
 
 
 
3a6f1f2
 
 
 
 
 
87c57a3
 
 
 
 
 
 
 
 
c8f8b0e
87c57a3
 
 
3faa99b
c8f8b0e
 
 
 
 
 
 
 
 
 
3faa99b
 
 
 
 
 
 
5f57808
c8f8b0e
 
 
 
 
 
 
 
 
 
5f57808
 
 
c8f8b0e
 
 
5f57808
 
 
 
3a6f1f2
 
 
 
 
 
 
 
87c57a3
3faa99b
c8f8b0e
3faa99b
 
3a6f1f2
c8f8b0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a6f1f2
c8f8b0e
 
 
 
3a6f1f2
 
c8f8b0e
3a6f1f2
c8f8b0e
 
 
 
 
 
 
3a6f1f2
5f57808
 
 
3a6f1f2
3faa99b
3a6f1f2
3faa99b
3a6f1f2
 
 
87c57a3
 
 
3a6f1f2
 
 
 
 
 
 
 
 
 
 
 
 
c8f8b0e
 
 
 
3a6f1f2
c8f8b0e
 
 
 
3a6f1f2
 
 
 
 
 
 
3faa99b
 
 
3a6f1f2
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import io
from enum import Enum
from typing import Any, List, Optional, Tuple, Union, cast

import numpy as np
import onnxruntime as ort
from cv2 import (
    BORDER_DEFAULT,
    MORPH_ELLIPSE,
    MORPH_OPEN,
    GaussianBlur,
    getStructuringElement,
    morphologyEx,
)
from PIL import Image, ImageOps
from PIL.Image import Image as PILImage
from pymatting.alpha.estimate_alpha_cf import estimate_alpha_cf
from pymatting.foreground.estimate_foreground_ml import estimate_foreground_ml
from pymatting.util.util import stack_images
from scipy.ndimage import binary_erosion

from .session_factory import new_session
from .sessions import sessions_class
from .sessions.base import BaseSession

ort.set_default_logger_severity(3)

kernel = getStructuringElement(MORPH_ELLIPSE, (3, 3))


class ReturnType(Enum):
    BYTES = 0
    PILLOW = 1
    NDARRAY = 2


def alpha_matting_cutout(
    img: PILImage,
    mask: PILImage,
    foreground_threshold: int,
    background_threshold: int,
    erode_structure_size: int,
) -> PILImage:
    """
    Perform alpha matting on an image using a given mask and threshold values.

    This function takes a PIL image `img` and a PIL image `mask` as input, along with
    the `foreground_threshold` and `background_threshold` values used to determine
    foreground and background pixels. The `erode_structure_size` parameter specifies
    the size of the erosion structure to be applied to the mask.

    The function returns a PIL image representing the cutout of the foreground object
    from the original image.
    """
    if img.mode == "RGBA" or img.mode == "CMYK":
        img = img.convert("RGB")

    img_array = np.asarray(img)
    mask_array = np.asarray(mask)

    is_foreground = mask_array > foreground_threshold
    is_background = mask_array < background_threshold

    structure = None
    if erode_structure_size > 0:
        structure = np.ones(
            (erode_structure_size, erode_structure_size), dtype=np.uint8
        )

    is_foreground = binary_erosion(is_foreground, structure=structure)
    is_background = binary_erosion(is_background, structure=structure, border_value=1)

    trimap = np.full(mask_array.shape, dtype=np.uint8, fill_value=128)
    trimap[is_foreground] = 255
    trimap[is_background] = 0

    img_normalized = img_array / 255.0
    trimap_normalized = trimap / 255.0

    alpha = estimate_alpha_cf(img_normalized, trimap_normalized)
    foreground = estimate_foreground_ml(img_normalized, alpha)
    cutout = stack_images(foreground, alpha)

    cutout = np.clip(cutout * 255, 0, 255).astype(np.uint8)
    cutout = Image.fromarray(cutout)

    return cutout


def naive_cutout(img: PILImage, mask: PILImage) -> PILImage:
    """
    Perform a simple cutout operation on an image using a mask.

    This function takes a PIL image `img` and a PIL image `mask` as input.
    It uses the mask to create a new image where the pixels from `img` are
    cut out based on the mask.

    The function returns a PIL image representing the cutout of the original
    image using the mask.
    """
    empty = Image.new("RGBA", (img.size), 0)
    cutout = Image.composite(img, empty, mask)
    return cutout


def putalpha_cutout(img: PILImage, mask: PILImage) -> PILImage:
    """
    Apply the specified mask to the image as an alpha cutout.

    Args:
        img (PILImage): The image to be modified.
        mask (PILImage): The mask to be applied.

    Returns:
        PILImage: The modified image with the alpha cutout applied.
    """
    img.putalpha(mask)
    return img


def get_concat_v_multi(imgs: List[PILImage]) -> PILImage:
    """
    Concatenate multiple images vertically.

    Args:
        imgs (List[PILImage]): The list of images to be concatenated.

    Returns:
        PILImage: The concatenated image.
    """
    pivot = imgs.pop(0)
    for im in imgs:
        pivot = get_concat_v(pivot, im)
    return pivot


def get_concat_v(img1: PILImage, img2: PILImage) -> PILImage:
    """
    Concatenate two images vertically.

    Args:
        img1 (PILImage): The first image.
        img2 (PILImage): The second image to be concatenated below the first image.

    Returns:
        PILImage: The concatenated image.
    """
    dst = Image.new("RGBA", (img1.width, img1.height + img2.height))
    dst.paste(img1, (0, 0))
    dst.paste(img2, (0, img1.height))
    return dst


def post_process(mask: np.ndarray) -> np.ndarray:
    """
    Post Process the mask for a smooth boundary by applying Morphological Operations
    Research based on paper: https://www.sciencedirect.com/science/article/pii/S2352914821000757
    args:
        mask: Binary Numpy Mask
    """
    mask = morphologyEx(mask, MORPH_OPEN, kernel)
    mask = GaussianBlur(mask, (5, 5), sigmaX=2, sigmaY=2, borderType=BORDER_DEFAULT)
    mask = np.where(mask < 127, 0, 255).astype(np.uint8)  # type: ignore
    return mask


def apply_background_color(img: PILImage, color: Tuple[int, int, int, int]) -> PILImage:
    """
    Apply the specified background color to the image.

    Args:
        img (PILImage): The image to be modified.
        color (Tuple[int, int, int, int]): The RGBA color to be applied.

    Returns:
        PILImage: The modified image with the background color applied.
    """
    r, g, b, a = color
    colored_image = Image.new("RGBA", img.size, (r, g, b, a))
    colored_image.paste(img, mask=img)

    return colored_image


def fix_image_orientation(img: PILImage) -> PILImage:
    """
    Fix the orientation of the image based on its EXIF data.

    Args:
        img (PILImage): The image to be fixed.

    Returns:
        PILImage: The fixed image.
    """
    return cast(PILImage, ImageOps.exif_transpose(img))


def download_models() -> None:
    """
    Download models for image processing.
    """
    for session in sessions_class:
        session.download_models()


def remove(
    data: Union[bytes, PILImage, np.ndarray],
    alpha_matting: bool = False,
    alpha_matting_foreground_threshold: int = 240,
    alpha_matting_background_threshold: int = 10,
    alpha_matting_erode_size: int = 10,
    session: Optional[BaseSession] = None,
    only_mask: bool = False,
    post_process_mask: bool = False,
    bgcolor: Optional[Tuple[int, int, int, int]] = None,
    force_return_bytes: bool = False,
    *args: Optional[Any],
    **kwargs: Optional[Any]
) -> Union[bytes, PILImage, np.ndarray]:
    """
    Remove the background from an input image.

    This function takes in various parameters and returns a modified version of the input image with the background removed. The function can handle input data in the form of bytes, a PIL image, or a numpy array. The function first checks the type of the input data and converts it to a PIL image if necessary. It then fixes the orientation of the image and proceeds to perform background removal using the 'u2net' model. The result is a list of binary masks representing the foreground objects in the image. These masks are post-processed and combined to create a final cutout image. If a background color is provided, it is applied to the cutout image. The function returns the resulting cutout image in the format specified by the input 'return_type' parameter or as python bytes if force_return_bytes is true.

    Parameters:
        data (Union[bytes, PILImage, np.ndarray]): The input image data.
        alpha_matting (bool, optional): Flag indicating whether to use alpha matting. Defaults to False.
        alpha_matting_foreground_threshold (int, optional): Foreground threshold for alpha matting. Defaults to 240.
        alpha_matting_background_threshold (int, optional): Background threshold for alpha matting. Defaults to 10.
        alpha_matting_erode_size (int, optional): Erosion size for alpha matting. Defaults to 10.
        session (Optional[BaseSession], optional): A session object for the 'u2net' model. Defaults to None.
        only_mask (bool, optional): Flag indicating whether to return only the binary masks. Defaults to False.
        post_process_mask (bool, optional): Flag indicating whether to post-process the masks. Defaults to False.
        bgcolor (Optional[Tuple[int, int, int, int]], optional): Background color for the cutout image. Defaults to None.
        force_return_bytes (bool, optional): Flag indicating whether to return the cutout image as bytes. Defaults to False.
        *args (Optional[Any]): Additional positional arguments.
        **kwargs (Optional[Any]): Additional keyword arguments.

    Returns:
        Union[bytes, PILImage, np.ndarray]: The cutout image with the background removed.
    """
    if isinstance(data, bytes) or force_return_bytes:
        return_type = ReturnType.BYTES
        img = cast(PILImage, Image.open(io.BytesIO(cast(bytes, data))))
    elif isinstance(data, PILImage):
        return_type = ReturnType.PILLOW
        img = cast(PILImage, data)
    elif isinstance(data, np.ndarray):
        return_type = ReturnType.NDARRAY
        img = cast(PILImage, Image.fromarray(data))
    else:
        raise ValueError(
            "Input type {} is not supported. Try using force_return_bytes=True to force python bytes output".format(
                type(data)
            )
        )

    putalpha = kwargs.pop("putalpha", False)

    # Fix image orientation
    img = fix_image_orientation(img)

    if session is None:
        session = new_session("u2net", *args, **kwargs)

    masks = session.predict(img, *args, **kwargs)
    cutouts = []

    for mask in masks:
        if post_process_mask:
            mask = Image.fromarray(post_process(np.array(mask)))

        if only_mask:
            cutout = mask

        elif alpha_matting:
            try:
                cutout = alpha_matting_cutout(
                    img,
                    mask,
                    alpha_matting_foreground_threshold,
                    alpha_matting_background_threshold,
                    alpha_matting_erode_size,
                )
            except ValueError:
                if putalpha:
                    cutout = putalpha_cutout(img, mask)
                else:
                    cutout = naive_cutout(img, mask)
        else:
            if putalpha:
                cutout = putalpha_cutout(img, mask)
            else:
                cutout = naive_cutout(img, mask)

        cutouts.append(cutout)

    cutout = img
    if len(cutouts) > 0:
        cutout = get_concat_v_multi(cutouts)

    if bgcolor is not None and not only_mask:
        cutout = apply_background_color(cutout, bgcolor)

    if ReturnType.PILLOW == return_type:
        return cutout

    if ReturnType.NDARRAY == return_type:
        return np.asarray(cutout)

    bio = io.BytesIO()
    cutout.save(bio, "PNG")
    bio.seek(0)

    return bio.read()