File size: 11,144 Bytes
3faa99b
c8f8b0e
 
3faa99b
c8f8b0e
3faa99b
 
 
c8f8b0e
3faa99b
 
 
 
 
 
 
 
 
 
 
c8f8b0e
3faa99b
 
 
c8f8b0e
3faa99b
 
 
 
c8f8b0e
 
3faa99b
 
c8f8b0e
3faa99b
 
 
c8f8b0e
 
 
 
 
 
 
 
 
 
 
 
 
3faa99b
c8f8b0e
 
3faa99b
 
c8f8b0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3faa99b
 
 
c8f8b0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3faa99b
c8f8b0e
 
 
 
 
 
 
 
 
 
 
3faa99b
 
c8f8b0e
3faa99b
 
 
 
c8f8b0e
3faa99b
 
 
 
 
 
 
 
 
c8f8b0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3faa99b
 
 
 
 
 
c8f8b0e
 
 
 
 
 
 
 
 
 
 
 
 
3faa99b
 
 
 
 
 
 
 
 
 
c8f8b0e
3faa99b
 
c8f8b0e
 
 
 
 
 
 
3faa99b
c8f8b0e
3faa99b
 
 
c8f8b0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3faa99b
 
c8f8b0e
 
3faa99b
5f57808
3faa99b
 
 
 
c8f8b0e
 
3faa99b
5f57808
3faa99b
 
 
c8f8b0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3faa99b
c8f8b0e
 
3faa99b
 
 
 
c8f8b0e
 
 
 
 
 
 
 
 
 
 
 
 
3faa99b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
import os
from copy import deepcopy
from typing import Dict, List, Tuple

import cv2
import numpy as np
import onnxruntime as ort
import pooch
from jsonschema import validate
from PIL import Image
from PIL.Image import Image as PILImage

from .base import BaseSession


def get_preprocess_shape(oldh: int, oldw: int, long_side_length: int):
    scale = long_side_length * 1.0 / max(oldh, oldw)
    newh, neww = oldh * scale, oldw * scale
    neww = int(neww + 0.5)
    newh = int(newh + 0.5)

    return (newh, neww)


def apply_coords(coords: np.ndarray, original_size, target_length):
    old_h, old_w = original_size
    new_h, new_w = get_preprocess_shape(
        original_size[0], original_size[1], target_length
    )

    coords = deepcopy(coords).astype(float)
    coords[..., 0] = coords[..., 0] * (new_w / old_w)
    coords[..., 1] = coords[..., 1] * (new_h / old_h)

    return coords


def get_input_points(prompt):
    points = []
    labels = []

    for mark in prompt:
        if mark["type"] == "point":
            points.append(mark["data"])
            labels.append(mark["label"])
        elif mark["type"] == "rectangle":
            points.append([mark["data"][0], mark["data"][1]])
            points.append([mark["data"][2], mark["data"][3]])
            labels.append(2)
            labels.append(3)

    points, labels = np.array(points), np.array(labels)
    return points, labels


def transform_masks(masks, original_size, transform_matrix):
    output_masks = []

    for batch in range(masks.shape[0]):
        batch_masks = []
        for mask_id in range(masks.shape[1]):
            mask = masks[batch, mask_id]
            mask = cv2.warpAffine(
                mask,
                transform_matrix[:2],
                (original_size[1], original_size[0]),
                flags=cv2.INTER_LINEAR,
            )
            batch_masks.append(mask)
        output_masks.append(batch_masks)

    return np.array(output_masks)


class SamSession(BaseSession):
    """
    This class represents a session for the Sam model.

    Args:
        model_name (str): The name of the model.
        sess_opts (ort.SessionOptions): The session options.
        *args: Variable length argument list.
        **kwargs: Arbitrary keyword arguments.
    """

    def __init__(
        self,
        model_name: str,
        sess_opts: ort.SessionOptions,
        providers=None,
        *args,
        **kwargs,
    ):
        """
        Initialize a new SamSession with the given model name and session options.

        Args:
            model_name (str): The name of the model.
            sess_opts (ort.SessionOptions): The session options.
            *args: Variable length argument list.
            **kwargs: Arbitrary keyword arguments.
        """
        self.model_name = model_name

        valid_providers = []
        available_providers = ort.get_available_providers()

        for provider in providers or []:
            if provider in available_providers:
                valid_providers.append(provider)
        else:
            valid_providers.extend(available_providers)

        paths = self.__class__.download_models(*args, **kwargs)
        self.encoder = ort.InferenceSession(
            str(paths[0]),
            providers=valid_providers,
            sess_options=sess_opts,
        )
        self.decoder = ort.InferenceSession(
            str(paths[1]),
            providers=valid_providers,
            sess_options=sess_opts,
        )

    def predict(
        self,
        img: PILImage,
        *args,
        **kwargs,
    ) -> List[PILImage]:
        """
        Predict masks for an input image.

        This function takes an image as input and performs various preprocessing steps on the image. It then runs the image through an encoder to obtain an image embedding. The function also takes input labels and points as additional arguments. It concatenates the input points and labels with padding and transforms them. It creates an empty mask input and an indicator for no mask. The function then passes the image embedding, point coordinates, point labels, mask input, and has mask input to a decoder. The decoder generates masks based on the input and returns them as a list of images.

        Parameters:
            img (PILImage): The input image.
            *args: Additional arguments.
            **kwargs: Additional keyword arguments.

        Returns:
            List[PILImage]: A list of masks generated by the decoder.
        """
        prompt = kwargs.get("sam_prompt", "{}")
        schema = {
            "type": "array",
            "items": {
                "type": "object",
                "properties": {
                    "type": {"type": "string"},
                    "label": {"type": "integer"},
                    "data": {
                        "type": "array",
                        "items": {"type": "number"},
                    },
                },
            },
        }

        validate(instance=prompt, schema=schema)

        target_size = 1024
        input_size = (684, 1024)
        encoder_input_name = self.encoder.get_inputs()[0].name

        img = img.convert("RGB")
        cv_image = np.array(img)
        original_size = cv_image.shape[:2]

        scale_x = input_size[1] / cv_image.shape[1]
        scale_y = input_size[0] / cv_image.shape[0]
        scale = min(scale_x, scale_y)

        transform_matrix = np.array(
            [
                [scale, 0, 0],
                [0, scale, 0],
                [0, 0, 1],
            ]
        )

        cv_image = cv2.warpAffine(
            cv_image,
            transform_matrix[:2],
            (input_size[1], input_size[0]),
            flags=cv2.INTER_LINEAR,
        )

        ## encoder

        encoder_inputs = {
            encoder_input_name: cv_image.astype(np.float32),
        }

        encoder_output = self.encoder.run(None, encoder_inputs)
        image_embedding = encoder_output[0]

        embedding = {
            "image_embedding": image_embedding,
            "original_size": original_size,
            "transform_matrix": transform_matrix,
        }

        ## decoder

        input_points, input_labels = get_input_points(prompt)
        onnx_coord = np.concatenate([input_points, np.array([[0.0, 0.0]])], axis=0)[
            None, :, :
        ]
        onnx_label = np.concatenate([input_labels, np.array([-1])], axis=0)[
            None, :
        ].astype(np.float32)
        onnx_coord = apply_coords(onnx_coord, input_size, target_size).astype(
            np.float32
        )

        onnx_coord = np.concatenate(
            [
                onnx_coord,
                np.ones((1, onnx_coord.shape[1], 1), dtype=np.float32),
            ],
            axis=2,
        )
        onnx_coord = np.matmul(onnx_coord, transform_matrix.T)
        onnx_coord = onnx_coord[:, :, :2].astype(np.float32)

        onnx_mask_input = np.zeros((1, 1, 256, 256), dtype=np.float32)
        onnx_has_mask_input = np.zeros(1, dtype=np.float32)

        decoder_inputs = {
            "image_embeddings": image_embedding,
            "point_coords": onnx_coord,
            "point_labels": onnx_label,
            "mask_input": onnx_mask_input,
            "has_mask_input": onnx_has_mask_input,
            "orig_im_size": np.array(input_size, dtype=np.float32),
        }

        masks, _, _ = self.decoder.run(None, decoder_inputs)
        inv_transform_matrix = np.linalg.inv(transform_matrix)
        masks = transform_masks(masks, original_size, inv_transform_matrix)

        mask = np.zeros((masks.shape[2], masks.shape[3], 3), dtype=np.uint8)
        for m in masks[0, :, :, :]:
            mask[m > 0.0] = [255, 255, 255]

        return [Image.fromarray(mask).convert("L")]

    @classmethod
    def download_models(cls, *args, **kwargs):
        """
        Class method to download ONNX model files.

        This method is responsible for downloading two ONNX model files from specified URLs and saving them locally. The downloaded files are saved with the naming convention 'name_encoder.onnx' and 'name_decoder.onnx', where 'name' is the value returned by the 'name' method.

        Parameters:
            cls: The class object.
            *args: Variable length argument list.
            **kwargs: Arbitrary keyword arguments.

        Returns:
            tuple: A tuple containing the file paths of the downloaded encoder and decoder models.
        """
        model_name = kwargs.get("sam_model", "sam_vit_b_01ec64")
        quant = kwargs.get("sam_quant", False)

        fname_encoder = f"{model_name}.encoder.onnx"
        fname_decoder = f"{model_name}.decoder.onnx"

        if quant:
            fname_encoder = f"{model_name}.encoder.quant.onnx"
            fname_decoder = f"{model_name}.decoder.quant.onnx"

        pooch.retrieve(
            f"https://github.com/danielgatis/rembg/releases/download/v0.0.0/{fname_encoder}",
            None,
            fname=fname_encoder,
            path=cls.u2net_home(*args, **kwargs),
            progressbar=True,
        )

        pooch.retrieve(
            f"https://github.com/danielgatis/rembg/releases/download/v0.0.0/{fname_decoder}",
            None,
            fname=fname_decoder,
            path=cls.u2net_home(*args, **kwargs),
            progressbar=True,
        )

        if fname_encoder == "sam_vit_h_4b8939.encoder.onnx" and not os.path.exists(
            os.path.join(
                cls.u2net_home(*args, **kwargs), "sam_vit_h_4b8939.encoder_data.bin"
            )
        ):
            content = bytearray()

            for i in range(1, 4):
                pooch.retrieve(
                    f"https://github.com/danielgatis/rembg/releases/download/v0.0.0/sam_vit_h_4b8939.encoder_data.{i}.bin",
                    None,
                    fname=f"sam_vit_h_4b8939.encoder_data.{i}.bin",
                    path=cls.u2net_home(*args, **kwargs),
                    progressbar=True,
                )

                fbin = os.path.join(
                    cls.u2net_home(*args, **kwargs),
                    f"sam_vit_h_4b8939.encoder_data.{i}.bin",
                )
                content.extend(open(fbin, "rb").read())
                os.remove(fbin)

            with open(
                os.path.join(
                    cls.u2net_home(*args, **kwargs),
                    "sam_vit_h_4b8939.encoder_data.bin",
                ),
                "wb",
            ) as fp:
                fp.write(content)

        return (
            os.path.join(cls.u2net_home(*args, **kwargs), fname_encoder),
            os.path.join(cls.u2net_home(*args, **kwargs), fname_decoder),
        )

    @classmethod
    def name(cls, *args, **kwargs):
        """
        Class method to return a string value.

        This method returns the string value 'sam'.

        Parameters:
            cls: The class object.
            *args: Variable length argument list.
            **kwargs: Arbitrary keyword arguments.

        Returns:
            str: The string value 'sam'.
        """
        return "sam"