Spaces:
Running
Running
import os | |
from typing import Dict, List, Tuple | |
import numpy as np | |
import onnxruntime as ort | |
from PIL import Image | |
from PIL.Image import Image as PILImage | |
class BaseSession: | |
def __init__( | |
self, | |
model_name: str, | |
sess_opts: ort.SessionOptions, | |
providers=None, | |
*args, | |
**kwargs | |
): | |
self.model_name = model_name | |
self.providers = [] | |
_providers = ort.get_available_providers() | |
if providers: | |
for provider in providers: | |
if provider in _providers: | |
self.providers.append(provider) | |
else: | |
self.providers.extend(_providers) | |
self.inner_session = ort.InferenceSession( | |
str(self.__class__.download_models()), | |
providers=self.providers, | |
sess_options=sess_opts, | |
) | |
def normalize( | |
self, | |
img: PILImage, | |
mean: Tuple[float, float, float], | |
std: Tuple[float, float, float], | |
size: Tuple[int, int], | |
*args, | |
**kwargs | |
) -> Dict[str, np.ndarray]: | |
im = img.convert("RGB").resize(size, Image.LANCZOS) | |
im_ary = np.array(im) | |
im_ary = im_ary / np.max(im_ary) | |
tmpImg = np.zeros((im_ary.shape[0], im_ary.shape[1], 3)) | |
tmpImg[:, :, 0] = (im_ary[:, :, 0] - mean[0]) / std[0] | |
tmpImg[:, :, 1] = (im_ary[:, :, 1] - mean[1]) / std[1] | |
tmpImg[:, :, 2] = (im_ary[:, :, 2] - mean[2]) / std[2] | |
tmpImg = tmpImg.transpose((2, 0, 1)) | |
return { | |
self.inner_session.get_inputs()[0] | |
.name: np.expand_dims(tmpImg, 0) | |
.astype(np.float32) | |
} | |
def predict(self, img: PILImage, *args, **kwargs) -> List[PILImage]: | |
raise NotImplementedError | |
def checksum_disabled(cls, *args, **kwargs): | |
return os.getenv("MODEL_CHECKSUM_DISABLED", None) is not None | |
def u2net_home(cls, *args, **kwargs): | |
return os.path.expanduser( | |
os.getenv( | |
"U2NET_HOME", os.path.join(os.getenv("XDG_DATA_HOME", "~"), ".u2net") | |
) | |
) | |
def download_models(cls, *args, **kwargs): | |
raise NotImplementedError | |
def name(cls, *args, **kwargs): | |
raise NotImplementedError | |