Spaces:
Running
Running
import os | |
from typing import List | |
import numpy as np | |
import pooch | |
from PIL import Image | |
from PIL.Image import Image as PILImage | |
from .base import BaseSession | |
class DisSession(BaseSession): | |
def predict(self, img: PILImage, *args, **kwargs) -> List[PILImage]: | |
ort_outs = self.inner_session.run( | |
None, | |
self.normalize(img, (0.485, 0.456, 0.406), (1.0, 1.0, 1.0), (1024, 1024)), | |
) | |
pred = ort_outs[0][:, 0, :, :] | |
ma = np.max(pred) | |
mi = np.min(pred) | |
pred = (pred - mi) / (ma - mi) | |
pred = np.squeeze(pred) | |
mask = Image.fromarray((pred * 255).astype("uint8"), mode="L") | |
mask = mask.resize(img.size, Image.LANCZOS) | |
return [mask] | |
def download_models(cls, *args, **kwargs): | |
fname = f"{cls.name()}.onnx" | |
pooch.retrieve( | |
"https://github.com/danielgatis/rembg/releases/download/v0.0.0/isnet-general-use.onnx", | |
"md5:fc16ebd8b0c10d971d3513d564d01e29", | |
fname=fname, | |
path=cls.u2net_home(), | |
progressbar=True, | |
) | |
return os.path.join(cls.u2net_home(), fname) | |
def name(cls, *args, **kwargs): | |
return "isnet-general-use" | |