import os from typing import List import numpy as np import pooch from PIL import Image from PIL.Image import Image as PILImage from .base import BaseSession class DisSession(BaseSession): """ This class represents a session for object detection. """ def predict(self, img: PILImage, *args, **kwargs) -> List[PILImage]: """ Use a pre-trained model to predict the object in the given image. Parameters: img (PILImage): The input image. *args: Variable length argument list. **kwargs: Arbitrary keyword arguments. Returns: List[PILImage]: A list of predicted mask images. """ ort_outs = self.inner_session.run( None, self.normalize(img, (0.485, 0.456, 0.406), (1.0, 1.0, 1.0), (1024, 1024)), ) pred = ort_outs[0][:, 0, :, :] ma = np.max(pred) mi = np.min(pred) pred = (pred - mi) / (ma - mi) pred = np.squeeze(pred) mask = Image.fromarray((pred * 255).astype("uint8"), mode="L") mask = mask.resize(img.size, Image.Resampling.LANCZOS) return [mask] @classmethod def download_models(cls, *args, **kwargs): """ Download the pre-trained models. Parameters: *args: Variable length argument list. **kwargs: Arbitrary keyword arguments. Returns: str: The path of the downloaded model file. """ fname = f"{cls.name(*args, **kwargs)}.onnx" pooch.retrieve( "https://github.com/danielgatis/rembg/releases/download/v0.0.0/isnet-anime.onnx", ( None if cls.checksum_disabled(*args, **kwargs) else "md5:6f184e756bb3bd901c8849220a83e38e" ), fname=fname, path=cls.u2net_home(*args, **kwargs), progressbar=True, ) return os.path.join(cls.u2net_home(*args, **kwargs), fname) @classmethod def name(cls, *args, **kwargs): """ Get the name of the pre-trained model. Parameters: *args: Variable length argument list. **kwargs: Arbitrary keyword arguments. Returns: str: The name of the pre-trained model. """ return "isnet-anime"