import os from typing import List import numpy as np import pooch from PIL import Image from PIL.Image import Image as PILImage from .base import BaseSession class DisSession(BaseSession): def predict(self, img: PILImage, *args, **kwargs) -> List[PILImage]: """ Predicts the mask image for the input image. This method takes a PILImage object as input and returns a list of PILImage objects as output. It performs several image processing operations to generate the mask image. Parameters: img (PILImage): The input image. Returns: List[PILImage]: A list of PILImage objects representing the generated mask image. """ ort_outs = self.inner_session.run( None, self.normalize(img, (0.485, 0.456, 0.406), (1.0, 1.0, 1.0), (1024, 1024)), ) pred = ort_outs[0][:, 0, :, :] ma = np.max(pred) mi = np.min(pred) pred = (pred - mi) / (ma - mi) pred = np.squeeze(pred) mask = Image.fromarray((pred * 255).astype("uint8"), mode="L") mask = mask.resize(img.size, Image.Resampling.LANCZOS) return [mask] @classmethod def download_models(cls, *args, **kwargs): """ Downloads the pre-trained model file. This class method downloads the pre-trained model file from a specified URL using the pooch library. Parameters: args: Additional positional arguments. kwargs: Additional keyword arguments. Returns: str: The path to the downloaded model file. """ fname = f"{cls.name(*args, **kwargs)}.onnx" pooch.retrieve( "https://github.com/danielgatis/rembg/releases/download/v0.0.0/isnet-general-use.onnx", ( None if cls.checksum_disabled(*args, **kwargs) else "md5:fc16ebd8b0c10d971d3513d564d01e29" ), fname=fname, path=cls.u2net_home(*args, **kwargs), progressbar=True, ) return os.path.join(cls.u2net_home(*args, **kwargs), fname) @classmethod def name(cls, *args, **kwargs): """ Returns the name of the model. This class method returns the name of the model. Parameters: args: Additional positional arguments. kwargs: Additional keyword arguments. Returns: str: The name of the model. """ return "isnet-general-use"