Ketengan-Diffusion-Lab commited on
Commit
b1bbde3
1 Parent(s): 9aeab55

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -3
app.py CHANGED
@@ -14,7 +14,7 @@ warnings.filterwarnings('ignore')
14
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
15
  print(f"Using device: {device}")
16
 
17
- model_name = 'cognitivecomputations/dolphin-vision-72b'
18
 
19
  # create model and load it to the specified device
20
  model = AutoModelForCausalLM.from_pretrained(
@@ -29,8 +29,9 @@ tokenizer = AutoTokenizer.from_pretrained(
29
  trust_remote_code=True
30
  )
31
 
32
- def inference(prompt, image, temperature, beam_size):
33
  messages = [
 
34
  {"role": "user", "content": f'<image>\n{prompt}'}
35
  ]
36
  text = tokenizer.apply_chat_template(
@@ -65,6 +66,11 @@ def inference(prompt, image, temperature, beam_size):
65
  with gr.Blocks() as demo:
66
  with gr.Row():
67
  with gr.Column():
 
 
 
 
 
68
  prompt_input = gr.Textbox(label="Prompt", placeholder="Describe this image in detail")
69
  image_input = gr.Image(label="Image", type="pil")
70
  temperature_input = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature")
@@ -75,7 +81,7 @@ with gr.Blocks() as demo:
75
 
76
  submit_button.click(
77
  fn=inference,
78
- inputs=[prompt_input, image_input, temperature_input, beam_size_input],
79
  outputs=output_text
80
  )
81
 
 
14
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
15
  print(f"Using device: {device}")
16
 
17
+ model_name = 'cognitivecomputations/dolphin-vision-7b'
18
 
19
  # create model and load it to the specified device
20
  model = AutoModelForCausalLM.from_pretrained(
 
29
  trust_remote_code=True
30
  )
31
 
32
+ def inference(prompt, image, temperature, beam_size, system_instruction):
33
  messages = [
34
+ {"role": "system", "content": system_instruction},
35
  {"role": "user", "content": f'<image>\n{prompt}'}
36
  ]
37
  text = tokenizer.apply_chat_template(
 
66
  with gr.Blocks() as demo:
67
  with gr.Row():
68
  with gr.Column():
69
+ system_instruction = gr.Textbox(
70
+ label="System Instruction",
71
+ value="You are Dolphin, a helpful AI assistant",
72
+ lines=2
73
+ )
74
  prompt_input = gr.Textbox(label="Prompt", placeholder="Describe this image in detail")
75
  image_input = gr.Image(label="Image", type="pil")
76
  temperature_input = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature")
 
81
 
82
  submit_button.click(
83
  fn=inference,
84
+ inputs=[prompt_input, image_input, temperature_input, beam_size_input, system_instruction],
85
  outputs=output_text
86
  )
87