File size: 1,900 Bytes
d1dfe2f
fbc62a1
9320c3b
 
bf2220c
9320c3b
 
 
 
 
d1dfe2f
 
 
 
 
b3c88ac
 
 
 
 
 
 
 
 
 
bf2220c
 
 
b3c88ac
 
 
 
 
 
95845a7
75e49a0
b3c88ac
 
75e49a0
0fc7951
74ecf72
95845a7
74ecf72
 
28d254a
74ecf72
d9dba4b
74ecf72
 
b3c88ac
 
9320c3b
 
 
 
b3c88ac
d1dfe2f
 
2f3dd60
3ec167a
d1dfe2f
fbc62a1
2721e7b
d1dfe2f
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import gradio as gr
import numpy as np


import torch
from super_image import EdsrModel, ImageLoader
from PIL import Image
import requests



def greet(name):
    return "Hello " + name + "!!"

def transformation(image):
 #   print(image)
  #  print( type(image) )
  #  url = 'https://paperswithcode.com/media/datasets/Set5-0000002728-07a9793f_zA3bDjj.jpg'
  #  imagee = Image.open(requests.get(url, stream=True).raw)
  #  model = EdsrModel.from_pretrained('eugenesiow/edsr-base', scale=4)
  #  inputs = ImageLoader.load_image(imagee)
 #   preds = model(inputs)
 #   print("1  :",preds)
 #   print( type(preds) )
 #   prednumpy=preds.detach().numpy()
    

    #preds=np.array(preds)
 #   print("2 :",prednumpy)
 #   ImageLoader.save_image(preds, './scaled_2x.png')
 #   ImageLoader.save_compare(inputs, preds, './scaled_2x_compare.png')

    url = 'https://paperswithcode.com/media/datasets/Set5-0000002728-07a9793f_zA3bDjj.jpg'
    image = Image.open(requests.get(url, stream=True).raw)
    model = EdsrModel.from_pretrained('eugenesiow/edsr-base', scale=4)
    print('ok')
    inputs = ImageLoader.load_image(image)
    preds = model(inputs)
    print('ok1')
  #  ImageLoader.save_image(preds, './scaled_2x.png')
    ImageLoader.save_compare(inputs, preds, 'scaleed_2x_compare.png')
    print("ok2")
    prednumpy=preds.detach().numpy()
    print('pnump',type(prednumpy))
    print('predtype',type(preds))
    print('ok3')
    prednumpy = np.squeeze(prednumpy)

    return prednumpy

    


    
  #  large_image = cartoon_upsampling_8x(image, 'a_8x_larger_output_image.png' )
 #   return prednumpy

with gr.Blocks() as demo:
    image1=gr.Image(type='filepath')
    
    button=gr.Button("LE BOUTON")
    image2=gr.Image(type='numpy')
    button.click(fn=transformation,inputs=image1,outputs=image2,api_name="upscale")


iface = gr.Interface(fn=greet, inputs="text", outputs="text")
demo.launch()