Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
import torch | |
from super_image import EdsrModel, ImageLoader | |
from PIL import Image | |
import requests | |
import torchvision | |
import torchvision.transforms as T | |
def greet(name): | |
return "Hello " + name + "!!" | |
def transformation(image): | |
# print(image) | |
# print( type(image) ) | |
# url = 'https://paperswithcode.com/media/datasets/Set5-0000002728-07a9793f_zA3bDjj.jpg' | |
# imagee = Image.open(requests.get(url, stream=True).raw) | |
# model = EdsrModel.from_pretrained('eugenesiow/edsr-base', scale=4) | |
# inputs = ImageLoader.load_image(imagee) | |
# preds = model(inputs) | |
# print("1 :",preds) | |
# print( type(preds) ) | |
# prednumpy=preds.detach().numpy() | |
#preds=np.array(preds) | |
# print("2 :",prednumpy) | |
# ImageLoader.save_image(preds, './scaled_2x.png') | |
# ImageLoader.save_compare(inputs, preds, './scaled_2x_compare.png') | |
url = 'https://paperswithcode.com/media/datasets/Set5-0000002728-07a9793f_zA3bDjj.jpg' | |
image = Image.open(requests.get(url, stream=True).raw) | |
model = EdsrModel.from_pretrained('eugenesiow/edsr-base', scale=4) | |
print('ok') | |
inputs = ImageLoader.load_image(image) | |
preds = model(inputs) | |
print('ok1') | |
# ImageLoader.save_image(preds, './scaled_2x.png') | |
ImageLoader.save_compare(inputs, preds, 'scaleed_2x_compare.png') | |
print("ok2") | |
#prednumpy=preds.detach().numpy() | |
preds = preds.data.cpu().numpy() | |
pred = preds[0].transpose((1, 2, 0)) * 255.0 | |
# return Image.fromarray(pred.astype('uint8'), 'RGB') | |
# print('pnump',type(prednumpy)) | |
print('predtype',type(preds)) | |
print('ok3') | |
# prednumpy = np.squeeze(prednumpy) | |
return Image.fromarray(pred.astype('uint8'), 'RGB') | |
# large_image = cartoon_upsampling_8x(image, 'a_8x_larger_output_image.png' ) | |
# return prednumpy | |
with gr.Blocks() as demo: | |
image1=gr.Image(type='filepath') | |
button=gr.Button("LE BOUTON") | |
image2=gr.Image(type='pil') | |
button.click(fn=transformation,inputs=image1,outputs=image2,api_name="upscale") | |
iface = gr.Interface(fn=greet, inputs="text", outputs="text") | |
demo.launch() |