Spaces:
Sleeping
Sleeping
File size: 8,009 Bytes
f3b4964 0c56240 555e118 f3b4964 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import os
from glob import glob
from loguru import logger
import soundfile as sf
import librosa
import gradio as gr
from huggingface_hub import hf_hub_download
import time
import torch
import yaml
from s3prl_vc.upstream.interface import get_upstream
from s3prl.nn import Featurizer
import s3prl_vc.models
from s3prl_vc.utils import read_hdf5
from s3prl_vc.vocoder import Vocoder
# ---------- Settings ----------
GPU_ID = '-1'
os.environ['CUDA_VISIBLE_DEVICES'] = GPU_ID
DEVICE = 'cuda' if GPU_ID != '-1' else 'cpu'
SERVER_PORT = 42208
SERVER_NAME = "0.0.0.0"
SSL_DIR = './keyble_ssl'
EXAMPLE_DIR = './examples'
en_examples = sorted(glob(os.path.join(EXAMPLE_DIR, "en", '*.wav')))
jp_examples = sorted(glob(os.path.join(EXAMPLE_DIR, "jp", '*.wav')))
zh_examples = sorted(glob(os.path.join(EXAMPLE_DIR, "zh", '*.wav')))
TRGSPKS = ["TEF1", "TEF2", "TEM1", "TEM2"]
ref_samples = {
trgspk: sorted(glob(os.path.join("./ref_samples", trgspk, '*.wav')))
for trgspk in TRGSPKS
}
# ---------- Logging ----------
logger.add('app.log', mode='a')
logger.info('============================= App restarted =============================')
# ---------- Download models ----------
logger.info('============================= Download models ===========================')
vocoder_paths = {
"ckpt": hf_hub_download(repo_id="unilight/hifigan_vctk_plus_vcc2020", filename="checkpoint-2500000steps.pkl"),
"config": hf_hub_download(repo_id="unilight/hifigan_vctk_plus_vcc2020", filename="config.yml"),
"stats": hf_hub_download(repo_id="unilight/hifigan_vctk_plus_vcc2020", filename="stats.h5")
}
vc_model_paths = {
trgspk: {
"ckpt": hf_hub_download(repo_id="unilight/s3prl-vc-vcc2020", filename=f"{trgspk}/checkpoint-10000steps.pkl"),
"config": hf_hub_download(repo_id="unilight/s3prl-vc-vcc2020", filename=f"{trgspk}/config.yml"),
"stats": hf_hub_download(repo_id="unilight/s3prl-vc-vcc2020", filename=f"{trgspk}/stats.h5"),
} for trgspk in TRGSPKS
}
# ---------- Model ----------
vc_models = {}
for trgspk in TRGSPKS:
logger.info(f'============================= Setting up model for {trgspk} =============')
checkpoint_path = vc_model_paths[trgspk]["ckpt"]
config_path = vc_model_paths[trgspk]["config"]
stats_path = vc_model_paths[trgspk]["stats"]
with open(config_path) as f:
config = yaml.load(f, Loader=yaml.Loader)
config["trg_stats"] = {
"mean": torch.from_numpy(read_hdf5(stats_path, "mean")).float().to(DEVICE),
"scale": torch.from_numpy(read_hdf5(stats_path, "scale"))
.float()
.to(DEVICE),
}
# define upstream model
upstream_model = get_upstream(config["upstream"]).to(DEVICE)
upstream_model.eval()
upstream_featurizer = Featurizer(upstream_model).to(DEVICE)
upstream_featurizer.load_state_dict(
torch.load(checkpoint_path, map_location="cpu")["featurizer"]
)
upstream_featurizer.eval()
# get model and load parameters
model_class = getattr(s3prl_vc.models, config["model_type"])
model = model_class(
upstream_featurizer.output_size,
config["num_mels"],
config["sampling_rate"]
/ config["hop_size"]
* upstream_featurizer.downsample_rate
/ 16000,
config["trg_stats"],
use_spemb=config.get("use_spk_emb", False),
**config["model_params"],
).to(DEVICE)
model.load_state_dict(torch.load(checkpoint_path, map_location="cpu")["model"])
model = model.eval().to(DEVICE)
logger.info(f"Loaded model parameters from {checkpoint_path}.")
# load vocoder
vocoder = Vocoder(
vocoder_paths["ckpt"],
vocoder_paths["config"],
vocoder_paths["stats"],
config["trg_stats"],
DEVICE,
)
vc_models[trgspk] = {
"upstream": upstream_model,
"featurizer": upstream_featurizer,
"decoder": model,
"vocoder": vocoder
}
def predict(trgspk, wav_file):
x, fs = librosa.load(wav_file, sr=16000)
logger.info('wav file loaded')
with torch.no_grad():
start_time = time.time()
xs = torch.from_numpy(x).unsqueeze(0).float().to(DEVICE)
ilens = torch.LongTensor([x.shape[0]]).to(DEVICE)
all_hs, all_hlens = vc_models[trgspk]["upstream"](xs, ilens)
logger.info('upstream done')
hs, hlens = vc_models[trgspk]["featurizer"](all_hs, all_hlens)
logger.info('featurizer done')
outs, _ = vc_models[trgspk]["decoder"](hs, hlens, spk_embs=None)
logger.info('downstream done')
out = outs[0]
y, sr = vc_models[trgspk]["vocoder"].decode(out)
logger.info('vocoder done')
sf.write(
"out.wav",
y.cpu().numpy(),
24000,
"PCM_16",
)
logger.info('write done')
logger.info('RTF={}'.format(
(time.time() - start_time) / (len(x) / 16000)
))
return "out.wav"
with gr.Blocks(title="S3PRL-VC: Any-to-one voice conversion demo on VCC2020") as demo:
gr.Markdown(
"""
# S3PRL-VC: Any-to-one voice conversion demo on VCC2020
### [[Paper (ICASSP2023)]](https://arxiv.org/abs/2110.06280) [[Paper(JSTSP)]](https://arxiv.org/abs/2207.04356) [[Code]](https://github.com/unilight/s3prl-vc)
**S3PRL-VC** is a voice conversion (VC) toolkit for benchmarking self-supervised speech representations (S3Rs). The term **any-to-one** means that the system can convert from any unseen speaker to a pre-defined speaker given in training.
In this demo, you can record your voice, and the model will convert your voice to one of the four pre-defined speakers. These four speakers come from the **voice conversion challenge (VCC) 2020**. You can listen to the samples to get a sense of what these speakers sound like.
The **RTF** of the system is around **1.5~2.5**, i.e. if you recorded a 5 second long audio, it will take 5 * (1.5~2.5) = 7.5~12.5 seconds to generate the output.
"""
)
with gr.Row():
with gr.Column():
gr.Markdown("## Upload a .wav file here!")
input_wav = gr.Audio(label="Source speech", source='upload', type='filepath')
gr.Markdown("## Select a target speaker!")
trgspk = gr.Radio(label="Target speaker", choices=["TEF1", "TEF2", "TEM1", "TEM2"])
gr.Markdown("### Here is what the target speaker sounds like!")
ref_sample_wav1 = gr.Audio(label="Sample 1", type="filepath")
ref_sample_wav2 = gr.Audio(label="Sample 2", type="filepath")
trgspk.change(lambda trgspk: ref_samples[trgspk],
inputs = trgspk,
outputs = [ref_sample_wav1, ref_sample_wav2]
)
convert_btn = gr.Button(value="Convert!")
gr.Markdown("### You can use these examples if using a microphone is too troublesome!")
gr.Markdown("I recorded the samples using my Macbook Pro, so there might be some noises.")
gr.Examples(
examples=en_examples,
inputs=input_wav,
label="English examples"
)
gr.Examples(
examples=jp_examples,
inputs=input_wav,
label="Japanese examples"
)
gr.Examples(
examples=zh_examples,
inputs=input_wav,
label="Mandarin examples"
)
with gr.Column():
gr.Markdown("## Listen to the converted speech here!")
output_wav = gr.Audio(type="filepath", label="Converted speech")
convert_btn.click(predict, [trgspk, input_wav], output_wav)
if __name__ == '__main__':
try:
demo.launch(debug=True,
enable_queue=True,
)
except KeyboardInterrupt as e:
print(e)
finally:
demo.close() |