Spaces:
Runtime error
Runtime error
Test
Browse files- Frames1/ej.txt +0 -0
- Frames2/ej.txt +1 -0
- Frames3/ej.txt +0 -0
- Frames4/ej.txt +0 -0
- app.py +245 -0
- model.h5 +3 -0
- requirements.txt +0 -0
Frames1/ej.txt
ADDED
File without changes
|
Frames2/ej.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
o
|
Frames3/ej.txt
ADDED
File without changes
|
Frames4/ej.txt
ADDED
File without changes
|
app.py
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import tensorflow as tf
|
3 |
+
import tensorflow.keras.backend as K
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import cv2
|
8 |
+
import os
|
9 |
+
import shutil
|
10 |
+
from skimage.metrics import structural_similarity as ssim
|
11 |
+
|
12 |
+
beta = 1.0
|
13 |
+
|
14 |
+
# Loss for reveal network
|
15 |
+
def rev_loss(s_true, s_pred):
|
16 |
+
# Loss for reveal network is: beta * |S-S'|
|
17 |
+
return beta * K.sum(K.square(s_true - s_pred))
|
18 |
+
|
19 |
+
# Loss for the full model, used for preparation and hidding networks
|
20 |
+
def full_loss(y_true, y_pred):
|
21 |
+
# Loss for the full model is: |C-C'| + beta * |S-S'|
|
22 |
+
s_true, c_true = y_true[...,0:3], y_true[...,3:6]
|
23 |
+
s_pred, c_pred = y_pred[...,0:3], y_pred[...,3:6]
|
24 |
+
|
25 |
+
s_loss = rev_loss(s_true, s_pred)
|
26 |
+
c_loss = K.sum(K.square(c_true - c_pred))
|
27 |
+
return s_loss + c_loss
|
28 |
+
|
29 |
+
model = tf.keras.models.load_model("model.h5", custom_objects={'full_loss':
|
30 |
+
full_loss})
|
31 |
+
|
32 |
+
|
33 |
+
def preprocess_image(img):
|
34 |
+
if isinstance(img, np.ndarray):
|
35 |
+
img = Image.fromarray(img)
|
36 |
+
img = img.resize((124, 124), Image.ANTIALIAS)
|
37 |
+
img = np.array(img)
|
38 |
+
img = img / 255.0
|
39 |
+
return img
|
40 |
+
|
41 |
+
def steganography_image(imageO, imageF):
|
42 |
+
# Preprocess images
|
43 |
+
img_S = preprocess_image(imageO)
|
44 |
+
img_C = preprocess_image(imageF)
|
45 |
+
|
46 |
+
# Add batch dimension
|
47 |
+
img_S = np.expand_dims(img_S, axis=0)
|
48 |
+
img_C = np.expand_dims(img_C, axis=0)
|
49 |
+
|
50 |
+
# Predict with pre/loaded model
|
51 |
+
decoded = model.predict([img_S, img_C])
|
52 |
+
decoded_S, decoded_C = decoded[..., 0:3], decoded[..., 3:6]
|
53 |
+
|
54 |
+
# Post-process outputs
|
55 |
+
decoded_S = np.squeeze(decoded_S, axis=0) # Remove batch dimension
|
56 |
+
decoded_C = np.squeeze(decoded_C, axis=0) # Remove batch dimension
|
57 |
+
decoded_S = (decoded_S * 255).astype(np.uint8)
|
58 |
+
decoded_C = (decoded_C * 255).astype(np.uint8)
|
59 |
+
|
60 |
+
# Calculate absolute differences
|
61 |
+
diff_S = np.abs(decoded_S - (img_S.squeeze() * 255)).astype(np.uint8)
|
62 |
+
diff_C = np.abs(decoded_C - (img_C.squeeze() * 255)).astype(np.uint8)
|
63 |
+
|
64 |
+
# Create a plot of differences
|
65 |
+
fig, ax = plt.subplots(1, 2, figsize=(10, 5))
|
66 |
+
ax[0].imshow(diff_S)
|
67 |
+
ax[0].set_title('Difference in Secret Image')
|
68 |
+
ax[0].axis('off')
|
69 |
+
ax[1].imshow(diff_C)
|
70 |
+
ax[1].set_title('Difference in Cover Image')
|
71 |
+
ax[1].axis('off')
|
72 |
+
plt.tight_layout()
|
73 |
+
|
74 |
+
# Return images and plot
|
75 |
+
return decoded_S, decoded_C, fig
|
76 |
+
|
77 |
+
|
78 |
+
#Function to clear a folder
|
79 |
+
def clear_folder(path):
|
80 |
+
if os.path.exists(path):
|
81 |
+
shutil.rmtree(path)
|
82 |
+
os.makedirs(path)
|
83 |
+
|
84 |
+
#Function to extract every frame of a video and save them in a folder
|
85 |
+
def extractImages(pathIn, pathOut):
|
86 |
+
clear_folder(pathOut)
|
87 |
+
if not os.path.exists(pathOut):
|
88 |
+
os.makedirs(pathOut)
|
89 |
+
|
90 |
+
vidcap = cv2.VideoCapture(pathIn)
|
91 |
+
success, image = vidcap.read()
|
92 |
+
count = 0
|
93 |
+
|
94 |
+
while success:
|
95 |
+
frame_path = os.path.join(pathOut, f"frame{count}.jpg")
|
96 |
+
success, image = vidcap.read()
|
97 |
+
|
98 |
+
if success:
|
99 |
+
resized_image = cv2.resize(image, (124, 124), interpolation=cv2.INTER_AREA)
|
100 |
+
cv2.imwrite(frame_path, resized_image)
|
101 |
+
print(f'Saved frame {count} to {frame_path}')
|
102 |
+
else:
|
103 |
+
print(f'Failed to read frame at count {count}')
|
104 |
+
|
105 |
+
count += 1
|
106 |
+
|
107 |
+
#Function to create a new video based on a folder of frames
|
108 |
+
def rebuildVideo(framesPath, outputPath, fps=30):
|
109 |
+
frame_files = sorted([f for f in os.listdir(framesPath) if f.endswith('.jpg')],
|
110 |
+
key=lambda x: int(x[5:-4]))
|
111 |
+
|
112 |
+
first_frame_path = os.path.join(framesPath, frame_files[0])
|
113 |
+
frame = cv2.imread(first_frame_path)
|
114 |
+
height, width, layers = frame.shape
|
115 |
+
|
116 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
117 |
+
out = cv2.VideoWriter(outputPath, fourcc, fps, (width, height))
|
118 |
+
|
119 |
+
for file in frame_files:
|
120 |
+
frame_path = os.path.join(framesPath, file)
|
121 |
+
frame = cv2.imread(frame_path)
|
122 |
+
out.write(frame)
|
123 |
+
out.release()
|
124 |
+
|
125 |
+
|
126 |
+
def calculate_ssim(img1, img2):
|
127 |
+
img1_gray = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
|
128 |
+
img2_gray = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
|
129 |
+
score, _ = ssim(img1_gray, img2_gray, full=True)
|
130 |
+
return score
|
131 |
+
|
132 |
+
def plot_metrics(metrics):
|
133 |
+
fig, ax = plt.subplots()
|
134 |
+
ax.plot(metrics, label="SSIM")
|
135 |
+
ax.set_xlabel("Frame")
|
136 |
+
ax.set_ylabel("SSIM")
|
137 |
+
ax.set_title("SSIM over Frames")
|
138 |
+
ax.legend()
|
139 |
+
ax.grid(True)
|
140 |
+
return fig
|
141 |
+
|
142 |
+
def process_frame(imageO, imageF):
|
143 |
+
img_S = preprocess_image(imageO)
|
144 |
+
img_C = preprocess_image(imageF)
|
145 |
+
img_S = np.expand_dims(img_S, axis=0)
|
146 |
+
img_C = np.expand_dims(img_C, axis=0)
|
147 |
+
decoded = model.predict([img_S, img_C])
|
148 |
+
decoded_S, decoded_C = decoded[..., 0:3], decoded[..., 3:6]
|
149 |
+
decoded_S = np.squeeze(decoded_S, axis=0)
|
150 |
+
decoded_C = np.squeeze(decoded_C, axis=0)
|
151 |
+
decoded_S = (decoded_S * 255).astype(np.uint8)
|
152 |
+
decoded_C = (decoded_C * 255).astype(np.uint8)
|
153 |
+
return decoded_S, decoded_C
|
154 |
+
|
155 |
+
def steganography_video(video_path1, video_path2):
|
156 |
+
input_frames_path = "Frames1"
|
157 |
+
input_frames_path2 = "Frames2"
|
158 |
+
output_frames_path = "Frames3"
|
159 |
+
output_frames_path2 = "Frames4"
|
160 |
+
output_video_path = "output_video.mp4"
|
161 |
+
output_video_path2 = "output_video2.mp4"
|
162 |
+
extractImages(video_path1, input_frames_path)
|
163 |
+
extractImages(video_path2, input_frames_path2)
|
164 |
+
|
165 |
+
input_frame_files = sorted([f for f in os.listdir(input_frames_path) if f.endswith('.jpg')],
|
166 |
+
key=lambda x: int(x[5:-4]))
|
167 |
+
|
168 |
+
clear_folder(output_frames_path)
|
169 |
+
clear_folder(output_frames_path2)
|
170 |
+
i = 0
|
171 |
+
ssim_scores = []
|
172 |
+
ssim_scores2 = []
|
173 |
+
|
174 |
+
for file in input_frame_files:
|
175 |
+
frame_path = os.path.join(input_frames_path, file)
|
176 |
+
frame_path2 = os.path.join(input_frames_path2, f"frame{i}.jpg")
|
177 |
+
frame = cv2.imread(frame_path)
|
178 |
+
try:
|
179 |
+
frame2 = cv2.imread(frame_path2)
|
180 |
+
except:
|
181 |
+
print("Second video is too short, will be cut up to the length of the first one")
|
182 |
+
break
|
183 |
+
if frame2 is None:
|
184 |
+
break
|
185 |
+
decoded_S, decoded_C = process_frame(frame, frame2)
|
186 |
+
decoded_S_path = os.path.join(output_frames_path, file)
|
187 |
+
cv2.imwrite(decoded_S_path, decoded_S)
|
188 |
+
decoded_C_path = os.path.join(output_frames_path2, file)
|
189 |
+
cv2.imwrite(decoded_C_path, decoded_C)
|
190 |
+
print(frame.shape)
|
191 |
+
print(decoded_S.shape)
|
192 |
+
print(frame2.shape)
|
193 |
+
print(decoded_C.shape)
|
194 |
+
ssim_scores.append(calculate_ssim(frame, decoded_S))
|
195 |
+
ssim_scores2.append(calculate_ssim(frame2, decoded_C))
|
196 |
+
i+=1
|
197 |
+
|
198 |
+
rebuildVideo(output_frames_path, output_video_path, fps=20)
|
199 |
+
rebuildVideo(output_frames_path2, output_video_path2, fps=20)
|
200 |
+
|
201 |
+
return output_video_path, output_video_path2, ssim_scores, ssim_scores2
|
202 |
+
|
203 |
+
example_secret_image = "Examples/secret.jpg"
|
204 |
+
example_cover_image = "Examples/cover.jpg"
|
205 |
+
example_cover_video = "Examples/cover.mp4"
|
206 |
+
example_secret_video = "Examples/secret.mp4"
|
207 |
+
|
208 |
+
with gr.Blocks() as demo:
|
209 |
+
with gr.Tab("Image Processing"):
|
210 |
+
image_input1 = gr.Image(label="Cover Image")
|
211 |
+
image_input2 = gr.Image(label="Secret Image")
|
212 |
+
image_output1 = gr.Image(label="Decoded Cover Image")
|
213 |
+
image_output2 = gr.Image(label="Decoded Secret Image")
|
214 |
+
plot = gr.Plot(label = "Noise behind each image")
|
215 |
+
btn_image = gr.Button("Process Images")
|
216 |
+
|
217 |
+
btn_image.click(
|
218 |
+
fn=steganography_image,
|
219 |
+
inputs=[image_input1, image_input2],
|
220 |
+
outputs=[image_output1, image_output2, plot]
|
221 |
+
)
|
222 |
+
|
223 |
+
with gr.Tab("Video Processing"):
|
224 |
+
video_input = gr.Video(label="Input Cover Video")
|
225 |
+
video_input2 = gr.Video(label="Input Secret Video")
|
226 |
+
video_output = gr.Video(label="Output Cover Video")
|
227 |
+
video_output2 = gr.Video(label="Output Secret Video")
|
228 |
+
plot_output = gr.Plot(label="SSIM over Frames for Cover")
|
229 |
+
plot_output2 = gr.Plot(label="SSIM over Frames for Secret")
|
230 |
+
btn_video = gr.Button("Process Video")
|
231 |
+
|
232 |
+
def process_video_and_plot(video_path, video_path2):
|
233 |
+
video_path, video_path2, ssim_scores, ssim_scores2 = steganography_video(video_path, video_path2)
|
234 |
+
plot = plot_metrics(ssim_scores)
|
235 |
+
plot2 = plot_metrics(ssim_scores2)
|
236 |
+
plot.show()
|
237 |
+
return video_path, video_path2, plot, plot2
|
238 |
+
|
239 |
+
btn_video.click(
|
240 |
+
fn=process_video_and_plot,
|
241 |
+
inputs=[video_input, video_input2],
|
242 |
+
outputs=[video_output, video_output2, plot_output, plot_output2]
|
243 |
+
)
|
244 |
+
|
245 |
+
demo.launch(debug=True, share = True)
|
model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b287c5fa29cda983f4811bc3e33f301ee0e092e50ccc21b97692c8ae0a9b6552
|
3 |
+
size 4496460
|
requirements.txt
ADDED
Binary file (3.79 kB). View file
|
|