UniVTG / model /transformer_encoder_droppath.py
KevinQHLin's picture
Upload 60 files
9d0a4ae
raw
history blame
6.61 kB
import copy
import pdb
from typing import Optional
import torch
import torch.nn.functional as F
from torch import nn, Tensor
def mask_logits(inputs, mask, mask_value=-1e30):
mask = mask.type(torch.float32)
return inputs + (1.0 - mask) * mask_value
class Transformer(nn.Module):
def __init__(self, d_model=512, nhead=8, num_encoder_layers=4,
num_decoder_layers=6, dim_feedforward=2048, dropout=0.1, droppath=0.1,
activation="gelu", normalize_before=False, # False as default
return_intermediate_dec=False):
super().__init__()
encoder_layer = TransformerEncoderLayer(d_model, nhead, dim_feedforward,
dropout, droppath, activation, normalize_before)
encoder_norm = nn.LayerNorm(d_model) if normalize_before else None
self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm)
self._reset_parameters()
self.d_model = d_model
self.nhead = nhead
def _reset_parameters(self):
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
def forward(self, src, mask, pos_embed):
"""
Args:
src: (batch_size, L, d)
mask: (batch_size, L)
query_embed: (#queries, d) -> my imple (batch_size, d) and #queries=1
pos_embed: (batch_size, L, d) the same as src
Returns:
"""
# flatten NxCxHxW to HWxNxC
src = src.permute(1, 0, 2) # (L, batch_size, d)
pos_embed = pos_embed.permute(1, 0, 2) # (L, batch_size, d)
memory = self.encoder(src, src_key_padding_mask=mask, pos=pos_embed)
memory = memory.transpose(0, 1)
return memory
class TransformerEncoder(nn.Module):
def __init__(self, encoder_layer, num_layers, norm=None, return_intermediate=False):
super().__init__()
self.layers = _get_clones(encoder_layer, num_layers)
self.num_layers = num_layers
self.norm = norm
self.return_intermediate = return_intermediate
def forward(self, src,
mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None):
output = src
intermediate = []
for layer in self.layers:
output = layer(output, src_mask=mask,
src_key_padding_mask=src_key_padding_mask, pos=pos)
if self.return_intermediate:
intermediate.append(output)
if self.norm is not None:
output = self.norm(output)
if self.return_intermediate:
return torch.stack(intermediate)
return output
class TransformerEncoderLayer(nn.Module):
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, droppath=0.1,
activation="relu", normalize_before=False):
super().__init__()
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
# Implementation of Feedforward model
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
# self.dropout1 = nn.Dropout(dropout)
# self.dropout2 = nn.Dropout(dropout)
self.droppath1 = DropPath(droppath)
self.droppath2 = DropPath(droppath)
self.activation = _get_activation_fn(activation)
self.normalize_before = normalize_before
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
return tensor if pos is None else tensor + pos
def forward_post(self,
src,
src_mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None):
q = k = self.with_pos_embed(src, pos)
src2 = self.self_attn(q, k, value=src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0]
# src2 = self.self_attn_eff(q=q, k=k, v=src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0]
src = src + self.droppath1(src2)
src = self.norm1(src)
src2 = self.linear2(self.activation(self.linear1(src)))
# src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
src = src + self.droppath2(src2)
src = self.norm2(src)
return src
def forward(self, src,
src_mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None):
if self.normalize_before:
return self.forward_pre(src, src_mask, src_key_padding_mask, pos)
return self.forward_post(src, src_mask, src_key_padding_mask, pos)
def _get_clones(module, N):
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
def build_transformer(args):
return Transformer(
d_model=args.hidden_dim,
dropout=args.dropout,
droppath=args.droppath,
nhead=args.nheads,
dim_feedforward=args.dim_feedforward,
num_encoder_layers=args.enc_layers,
num_decoder_layers=args.dec_layers,
normalize_before=args.pre_norm,
return_intermediate_dec=True,
)
def drop_path(x, drop_prob=0.0, training=False):
"""
Stochastic Depth per sample.
"""
if drop_prob == 0.0 or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (x.ndim - 1)
mask = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
mask.floor_()
x = x.div(keep_prob) * mask
return x
class DropPath(nn.Module):
"""
Drop paths per sample (when applied in main path of residual blocks).
"""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
x = x.permute(1, 0, 2)
res = drop_path(x, self.drop_prob, self.training)
return res.permute(1, 0, 2)
# return drop_path(x, self.drop_prob, self.training)
def _get_activation_fn(activation):
"""Return an activation function given a string"""
if activation == "relu":
return F.relu
if activation == "gelu":
return F.gelu
if activation == "glu":
return F.glu
raise RuntimeError(F"activation should be relu/gelu, not {activation}.")