UniVTG / utils /basic_utils.py
KevinQHLin's picture
Upload 60 files
9d0a4ae
import os
import json
import torch
import random
import zipfile
import numpy as np
import pickle
from collections import OrderedDict, Counter
import pandas as pd
import shutil
def set_seed(seed, use_cuda=True):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if use_cuda:
torch.cuda.manual_seed_all(seed)
def load_pickle(filename):
with open(filename, "rb") as f:
return pickle.load(f)
def save_pickle(data, filename):
with open(filename, "wb") as f:
pickle.dump(data, f, protocol=pickle.HIGHEST_PROTOCOL)
def load_json(filename):
with open(filename, "r") as f:
return json.load(f)
def save_json(data, filename, save_pretty=False, sort_keys=False):
with open(filename, "w") as f:
if save_pretty:
f.write(json.dumps(data, indent=4, sort_keys=sort_keys))
else:
json.dump(data, f)
def load_jsonl(filename):
with open(filename, "r") as f:
return [json.loads(l.strip("\n")) for l in f.readlines()]
def save_jsonl(data, filename):
"""data is a list"""
with open(filename, "w") as f:
f.write("\n".join([json.dumps(e) for e in data]))
def save_lines(list_of_str, filepath):
with open(filepath, "w") as f:
f.write("\n".join(list_of_str))
def read_lines(filepath):
with open(filepath, "r") as f:
return [e.strip("\n") for e in f.readlines()]
def mkdirp(p):
if not os.path.exists(p):
os.makedirs(p)
def remkdirp(p):
if os.path.exists(p):
shutil.rmtree(p)
os.makedirs(p)
def flat_list_of_lists(l):
"""flatten a list of lists [[1,2], [3,4]] to [1,2,3,4]"""
return [item for sublist in l for item in sublist]
def convert_to_seconds(hms_time):
""" convert '00:01:12' to 72 seconds.
:hms_time (str): time in comma separated string, e.g. '00:01:12'
:return (int): time in seconds, e.g. 72
"""
times = [float(t) for t in hms_time.split(":")]
return times[0] * 3600 + times[1] * 60 + times[2]
def get_video_name_from_url(url):
return url.split("/")[-1][:-4]
def merge_dicts(list_dicts):
merged_dict = list_dicts[0].copy()
for i in range(1, len(list_dicts)):
merged_dict.update(list_dicts[i])
return merged_dict
def l2_normalize_np_array(np_array, eps=1e-5):
"""np_array: np.ndarray, (*, D), where the last dim will be normalized"""
return np_array / (np.linalg.norm(np_array, axis=-1, keepdims=True) + eps)
def make_zipfile(src_dir, save_path, enclosing_dir="", exclude_dirs=None, exclude_extensions=None,
exclude_dirs_substring=None):
"""make a zip file of root_dir, save it to save_path.
exclude_paths will be excluded if it is a subdir of root_dir.
An enclosing_dir is added is specified.
"""
abs_src = os.path.abspath(src_dir)
with zipfile.ZipFile(save_path, "w") as zf:
for dirname, subdirs, files in os.walk(src_dir):
if exclude_dirs is not None:
for e_p in exclude_dirs:
if e_p in subdirs:
subdirs.remove(e_p)
if exclude_dirs_substring is not None:
to_rm = []
for d in subdirs:
if exclude_dirs_substring in d:
to_rm.append(d)
for e in to_rm:
subdirs.remove(e)
arcname = os.path.join(enclosing_dir, dirname[len(abs_src) + 1:])
zf.write(dirname, arcname)
for filename in files:
if exclude_extensions is not None:
if os.path.splitext(filename)[1] in exclude_extensions:
continue # do not zip it
absname = os.path.join(dirname, filename)
arcname = os.path.join(enclosing_dir, absname[len(abs_src) + 1:])
zf.write(absname, arcname)
class AverageMeter(object):
"""Computes and stores the average and current/max/min value"""
def __init__(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
self.max = -1e10
self.min = 1e10
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
self.max = -1e10
self.min = 1e10
def update(self, val, n=1):
self.max = max(val, self.max)
self.min = min(val, self.min)
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def dissect_by_lengths(np_array, lengths, dim=0, assert_equal=True):
"""Dissect an array (N, D) into a list a sub-array,
np_array.shape[0] == sum(lengths), Output is a list of nd arrays, singlton dimention is kept"""
if assert_equal:
assert len(np_array) == sum(lengths)
length_indices = [0, ]
for i in range(len(lengths)):
length_indices.append(length_indices[i] + lengths[i])
if dim == 0:
array_list = [np_array[length_indices[i]:length_indices[i+1]] for i in range(len(lengths))]
elif dim == 1:
array_list = [np_array[:, length_indices[i]:length_indices[i + 1]] for i in range(len(lengths))]
elif dim == 2:
array_list = [np_array[:, :, length_indices[i]:length_indices[i + 1]] for i in range(len(lengths))]
else:
raise NotImplementedError
return array_list
def get_ratio_from_counter(counter_obj, threshold=200):
keys = counter_obj.keys()
values = counter_obj.values()
filtered_values = [counter_obj[k] for k in keys if k > threshold]
return float(sum(filtered_values)) / sum(values)
def get_counter_dist(counter_object, sort_type="none"):
_sum = sum(counter_object.values())
dist = {k: float(f"{100 * v / _sum:.2f}") for k, v in counter_object.items()}
if sort_type == "value":
dist = OrderedDict(sorted(dist.items(), reverse=True))
return dist
def get_show_name(vid_name):
"""
get tvshow name from vid_name
:param vid_name: video clip name
:return: tvshow name
"""
show_list = ["friends", "met", "castle", "house", "grey"]
vid_name_prefix = vid_name.split("_")[0]
show_name = vid_name_prefix if vid_name_prefix in show_list else "bbt"
return show_name
def get_abspaths_by_ext(dir_path, ext=(".jpg",)):
"""Get absolute paths to files in dir_path with extensions specified by ext.
Note this function does work recursively.
"""
if isinstance(ext, list):
ext = tuple(ext)
if isinstance(ext, str):
ext = tuple([ext, ])
filepaths = [os.path.join(root, name)
for root, dirs, files in os.walk(dir_path)
for name in files
if name.endswith(tuple(ext))]
return filepaths
def get_basename_no_ext(path):
""" '/data/movienet/240p_keyframe_feats/tt7672188.npz' --> 'tt7672188' """
return os.path.splitext(os.path.split(path)[1])[0]
def dict_to_markdown(d, max_str_len=120):
# convert list into its str representation
d = {k: v.__repr__() if isinstance(v, list) else v for k, v in d.items()}
# truncate string that is longer than max_str_len
if max_str_len is not None:
d = {k: v[-max_str_len:] if isinstance(v, str) else v for k, v in d.items()}
return pd.DataFrame(d, index=[0]).transpose().to_markdown()