UniVTG / utils /kts_utils.py
KevinQHLin's picture
Upload 60 files
9d0a4ae
import numpy as np
from .cpd_nonlin import cpd_nonlin
def cpd_auto(K, ncp, vmax, desc_rate=1, **kwargs):
"""Main interface
Detect change points automatically selecting their number
K - kernel between each pair of frames in video
ncp - maximum ncp
vmax - special parameter
Optional arguments:
lmin - minimum segment length
lmax - maximum segment length
desc_rate - rate of descriptor sampling (vmax always corresponds to 1x)
Note:
- cps are always calculated in subsampled coordinates irrespective to
desc_rate
- lmin and m should be in agreement
---
Returns: (cps, costs)
cps - best selected change-points
costs - costs for 0,1,2,...,m change-points
Memory requirement: ~ (3*N*N + N*ncp)*4 bytes ~= 16 * N^2 bytes
That is 1,6 Gb for the N=10000.
"""
m = ncp
(_, scores) = cpd_nonlin(K, m, backtrack=False, **kwargs)
# print("scores ",scores)
N = K.shape[0]
N2 = N * desc_rate # length of the video before subsampling
penalties = np.zeros(m + 1)
# Prevent division by zero (in case of 0 changes)
ncp = np.arange(1, m + 1)
penalties[1:] = (vmax * ncp / (2.0 * N2)) * (np.log(float(N2) / ncp) + 1)
costs = scores / float(N) + penalties
m_best = np.argmin(costs)
# print("cost ",costs)
# print("m_best ",m_best)
(cps, scores2) = cpd_nonlin(K, m_best, **kwargs)
return (cps, costs)
# ------------------------------------------------------------------------------
# Extra functions (currently not used)
def estimate_vmax(K_stable):
"""K_stable - kernel between all frames of a stable segment"""
n = K_stable.shape[0]
vmax = np.trace(centering(K_stable) / n)
return vmax
def centering(K):
"""Apply kernel centering"""
mean_rows = np.mean(K, 1)[:, np.newaxis]
return K - mean_rows - mean_rows.T + np.mean(mean_rows)
def eval_score(K, cps):
""" Evaluate unnormalized empirical score
(sum of kernelized scatters) for the given change-points """
N = K.shape[0]
cps = [0] + list(cps) + [N]
V1 = 0
V2 = 0
for i in range(len(cps) - 1):
K_sub = K[cps[i]:cps[i + 1], :][:, cps[i]:cps[i + 1]]
V1 += np.sum(np.diag(K_sub))
V2 += np.sum(K_sub) / float(cps[i + 1] - cps[i])
return (V1 - V2)
def eval_cost(K, cps, score, vmax):
""" Evaluate cost function for automatic number of change points selection
K - kernel between all frames
cps - selected change-points
score - unnormalized empirical score (sum of kernelized scatters)
vmax - vmax parameter"""
N = K.shape[0]
penalty = (vmax * len(cps) / (2.0 * N)) * (np.log(float(N) / len(cps)) + 1)
return score / float(N) + penalty
def calc_scatters(K):
n = K.shape[0]
K1 = np.cumsum([0] + list(np.diag(K)))
K2 = np.zeros((n + 1, n + 1)).astype(np.double())
K2[1:, 1:] = np.cumsum(np.cumsum(K, 0), 1) # TODO: use the fact that K - symmetric
# KK = np.cumsum(K, 0).astype(np.double())
# K2[1:, 1:] = np.cumsum(KK, 1) # TODO: use the fact that K - symmetric
scatters = np.zeros((n, n))
# code = r"""
# for (int i = 0; i < n; i++) {
# for (int j = i; j < n; j++) {
# scatters(i,j) = K1(j+1)-K1(i) - (K2(j+1,j+1)+K2(i,i)-K2(j+1,i)-K2(i,j+1))/(j-i+1);
# }
# }
# """
# weave.inline(code, ['K1','K2','scatters','n'], global_dict = \
# {'K1':K1, 'K2':K2, 'scatters':scatters, 'n':n}, type_converters=weave.converters.blitz)
for i in range(n):
for j in range(i, n):
scatters[i, j] = K1[j + 1] - K1[i] - (K2[j + 1, j + 1] + K2[i, i] - K2[j + 1, i] - K2[i, j + 1]) / (
j - i + 1)
return scatters
def cpd_nonlin(K, ncp, lmin=1, lmax=100000, backtrack=True, verbose=True,
out_scatters=None):
""" Change point detection with dynamic programming
K - square kernel matrix
ncp - number of change points to detect (ncp >= 0)
lmin - minimal length of a segment
lmax - maximal length of a segment
backtrack - when False - only evaluate objective scores (to save memory)
Returns: (cps, obj)
cps - detected array of change points: mean is thought to be constant on [ cps[i], cps[i+1] )
obj_vals - values of the objective function for 0..m changepoints
"""
m = int(ncp) # prevent numpy.int64
(n, n1) = K.shape
assert (n == n1), "Kernel matrix awaited."
assert (n >= (m + 1) * lmin)
assert (n <= (m + 1) * lmax)
assert (lmax >= lmin >= 1)
if verbose:
# print "n =", n
print("Precomputing scatters...")
J = calc_scatters(K)
if out_scatters != None:
out_scatters[0] = J
if verbose:
print("Inferring best change points...")
I = 1e101 * np.ones((m + 1, n + 1))
I[0, lmin:lmax] = J[0, lmin - 1:lmax - 1]
if backtrack:
p = np.zeros((m + 1, n + 1), dtype=int)
else:
p = np.zeros((1, 1), dtype=int)
# code = r"""
# #define max(x,y) ((x)>(y)?(x):(y))
# for (int k=1; k<m+1; k++) {
# for (int l=(k+1)*lmin; l<n+1; l++) {
# I(k, l) = 1e100; //nearly infinity
# for (int t=max(k*lmin,l-lmax); t<l-lmin+1; t++) {
# double c = I(k-1, t) + J(t, l-1);
# if (c < I(k, l)) {
# I(k, l) = c;
# if (backtrack == 1) {
# p(k, l) = t;
# }
# }
# }
# }
# }
# """
# weave.inline(code, ['m','n','p','I', 'J', 'lmin', 'lmax', 'backtrack'], \
# global_dict={'m':m, 'n':n, 'p':p, 'I':I, 'J':J, \
# 'lmin':lmin, 'lmax':lmax, 'backtrack': int(1) if backtrack else int(0)},
# type_converters=weave.converters.blitz)
for k in range(1, m + 1):
for l in range((k + 1) * lmin, n + 1):
I[k, l] = 1e100
for t in range(max(k * lmin, l - lmax), l - lmin + 1):
c = I[k - 1, t] + J[t, l - 1]
if (c < I[k, l]):
I[k, l] = c
if (backtrack == 1):
p[k, l] = t
# Collect change points
cps = np.zeros(m, dtype=int)
if backtrack:
cur = n
for k in range(m, 0, -1):
cps[k - 1] = p[k, cur]
cur = cps[k - 1]
scores = I[:, n].copy()
scores[scores > 1e99] = np.inf
return cps, scores