import pdb import torch def span_xx_to_cxw(xx_spans): """ Args: xx_spans: tensor, (#windows, 2) or (..., 2), each row is a window of format (st, ed) Returns: cxw_spans: tensor, (#windows, 2), each row is a window of format (center=(st+ed)/2, width=(ed-st)) >>> spans = torch.Tensor([[0, 1], [0.2, 0.4]]) >>> span_xx_to_cxw(spans) tensor([[0.5000, 1.0000], [0.3000, 0.2000]]) >>> spans = torch.Tensor([[[0, 1], [0.2, 0.4]]]) >>> span_xx_to_cxw(spans) tensor([[[0.5000, 1.0000], [0.3000, 0.2000]]]) """ center = xx_spans.sum(-1) * 0.5 width = xx_spans[..., 1] - xx_spans[..., 0] return torch.stack([center, width], dim=-1) def span_cxw_to_xx(cxw_spans): """ Args: cxw_spans: tensor, (#windows, 2) or (..., 2), the last dim is a row denoting a window of format (center, width) >>> spans = torch.Tensor([[0.5000, 1.0000], [0.3000, 0.2000]]) >>> span_cxw_to_xx(spans) tensor([[0.0000, 1.0000], [0.2000, 0.4000]]) >>> spans = torch.Tensor([[[0.5000, 1.0000], [0.3000, 0.2000]]]) >>> span_cxw_to_xx(spans) tensor([[[0.0000, 1.0000], [0.2000, 0.4000]]]) """ x1 = cxw_spans[..., 0] - 0.5 * cxw_spans[..., 1] x2 = cxw_spans[..., 0] + 0.5 * cxw_spans[..., 1] return torch.stack([x1, x2], dim=-1) def temporal_iou(spans1, spans2): """ Args: spans1: (N, 2) torch.Tensor, each row defines a span [st, ed] spans2: (M, 2) torch.Tensor, ... Returns: iou: (N, M) torch.Tensor union: (N, M) torch.Tensor >>> test_spans1 = torch.Tensor([[0, 0.2], [0.5, 1.0]]) >>> test_spans2 = torch.Tensor([[0, 0.3], [0., 1.0]]) >>> temporal_iou(test_spans1, test_spans2) (tensor([[0.6667, 0.2000], [0.0000, 0.5000]]), tensor([[0.3000, 1.0000], [0.8000, 1.0000]])) """ areas1 = spans1[:, 1] - spans1[:, 0] # (N, ) areas2 = spans2[:, 1] - spans2[:, 0] # (M, ) left = torch.max(spans1[:, None, 0], spans2[:, 0]) # (N, M) right = torch.min(spans1[:, None, 1], spans2[:, 1]) # (N, M inter = (right - left).clamp(min=0) # (N, M) union = areas1[:, None] + areas2 - inter # (N, M) iou = inter / union return iou, union def temporal_intersection_over_pred(gt_spans, pred_spans): """ intersection over the second input spans Args: gt_spans: (N, 2), pred_spans: (M, 2) Returns: """ left = torch.max(gt_spans[:, None, 0], pred_spans[:, 0]) right = torch.min(gt_spans[:, None, 1], pred_spans[:, 1]) inter = (right - left).clamp(min=0) # (N, M) inter_over_pred = inter / (pred_spans[:, 1] - pred_spans[:, 0]) return inter_over_pred def generalized_temporal_iou(spans1, spans2): """ Generalized IoU from https://giou.stanford.edu/ Also reference to DETR implementation of generalized_box_iou https://github.com/facebookresearch/detr/blob/master/util/box_ops.py#L40 Args: spans1: (N, 2) torch.Tensor, each row defines a span in xx format [st, ed] spans2: (M, 2) torch.Tensor, ... Returns: giou: (N, M) torch.Tensor >>> test_spans1 = torch.Tensor([[0, 0.2], [0.5, 1.0]]) >>> test_spans2 = torch.Tensor([[0, 0.3], [0., 1.0]]) >>> generalized_temporal_iou(test_spans1, test_spans2) tensor([[ 0.6667, 0.2000], [-0.2000, 0.5000]]) """ spans1 = spans1.float() spans2 = spans2.float() assert (spans1[:, 1] >= spans1[:, 0]).all() assert (spans2[:, 1] >= spans2[:, 0]).all() iou, union = temporal_iou(spans1, spans2) left = torch.min(spans1[:, None, 0], spans2[:, 0]) # (N, M) right = torch.max(spans1[:, None, 1], spans2[:, 1]) # (N, M) enclosing_area = (right - left).clamp(min=0) # (N, M) return iou - (enclosing_area - union) / enclosing_area