Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,46 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import ViTFeatureExtractor, ViTForImageClassification
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
# Define the model and feature extractor
|
7 |
+
model_name = "KhadijaAsehnoune12/OrangeLeafDiseaseDetector"
|
8 |
+
model = ViTForImageClassification.from_pretrained(model_name)
|
9 |
+
feature_extractor = ViTFeatureExtractor.from_pretrained(model_name)
|
10 |
+
|
11 |
+
# Define the label mapping
|
12 |
+
id2label = {
|
13 |
+
"0": "Aleurocanthus spiniferus",
|
14 |
+
"1": "Chancre citrique",
|
15 |
+
"2": "Cochenille blanche",
|
16 |
+
"3": "Dépérissement des agrumes",
|
17 |
+
"4": "Feuille saine",
|
18 |
+
"5": "Jaunissement des feuilles",
|
19 |
+
"6": "Maladie de l'oïdium",
|
20 |
+
"7": "Maladie du dragon jaune",
|
21 |
+
"8": "Mineuse des agrumes",
|
22 |
+
"9": "Trou de balle"
|
23 |
+
}
|
24 |
+
|
25 |
+
def predict(image):
|
26 |
+
# Preprocess the image
|
27 |
+
inputs = feature_extractor(images=image, return_tensors="pt")
|
28 |
+
|
29 |
+
# Forward pass through the model
|
30 |
+
outputs = model(**inputs)
|
31 |
+
|
32 |
+
# Get the predicted label
|
33 |
+
logits = outputs.logits
|
34 |
+
predicted_class_idx = logits.argmax(-1).item()
|
35 |
+
|
36 |
+
# Get the label name
|
37 |
+
predicted_label = id2label[str(predicted_class_idx)]
|
38 |
+
|
39 |
+
return predicted_label
|
40 |
+
|
41 |
+
# Create the Gradio interface
|
42 |
+
image = gr.Image(type="pil")
|
43 |
+
label = gr.Label(num_top_classes=3)
|
44 |
+
|
45 |
+
gr.Interface(fn=predict, inputs=image, outputs=label, title="Citrus Disease Classification",
|
46 |
+
description="Upload an image of a citrus leaf or fruit to classify its disease.").launch()
|