Update app.py
Browse files
app.py
CHANGED
@@ -9,44 +9,32 @@ from scipy.io import wavfile
|
|
9 |
import gradio as gr
|
10 |
|
11 |
def audio_to_audio_frame_stack(sound_data, frame_length, hop_length_frame):
|
12 |
-
"""This function
|
13 |
-
|
14 |
-
|
15 |
sequence_sample_length = sound_data.shape[0]
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
19 |
sound_data_array = np.vstack(sound_data_list)
|
20 |
-
|
21 |
return sound_data_array
|
22 |
|
23 |
-
|
24 |
def audio_files_to_numpy(audio_dir, list_audio_files, sample_rate, frame_length, hop_length_frame, min_duration):
|
25 |
-
"""This function
|
26 |
-
|
27 |
-
|
28 |
list_sound_array = []
|
29 |
-
|
30 |
for file in list_audio_files:
|
31 |
-
# open the audio file
|
32 |
y, sr = librosa.load(os.path.join(audio_dir, file), sr=sample_rate)
|
33 |
total_duration = librosa.get_duration(y=y, sr=sr)
|
34 |
|
35 |
-
if
|
36 |
-
list_sound_array.append(audio_to_audio_frame_stack(
|
37 |
-
y, frame_length, hop_length_frame))
|
38 |
else:
|
39 |
-
print(
|
40 |
-
|
41 |
-
|
42 |
-
return np.vstack(list_sound_array)
|
43 |
-
|
44 |
|
45 |
def blend_noise_randomly(voice, noise, nb_samples, frame_length):
|
46 |
-
"""This function
|
47 |
-
of voice sounds, noise sounds and the number of frames to be created
|
48 |
-
and return numpy arrays with voice randomly blend with noise"""
|
49 |
-
|
50 |
prod_voice = np.zeros((nb_samples, frame_length))
|
51 |
prod_noise = np.zeros((nb_samples, frame_length))
|
52 |
prod_noisy_voice = np.zeros((nb_samples, frame_length))
|
@@ -61,188 +49,196 @@ def blend_noise_randomly(voice, noise, nb_samples, frame_length):
|
|
61 |
|
62 |
return prod_voice, prod_noise, prod_noisy_voice
|
63 |
|
64 |
-
|
65 |
def audio_to_magnitude_db_and_phase(n_fft, hop_length_fft, audio):
|
66 |
-
"""
|
67 |
-
it returns the magnitude in dB and the phase"""
|
68 |
-
|
69 |
stftaudio = librosa.stft(audio, n_fft=n_fft, hop_length=hop_length_fft)
|
70 |
stftaudio_magnitude, stftaudio_phase = librosa.magphase(stftaudio)
|
71 |
-
|
72 |
-
stftaudio_magnitude_db = librosa.amplitude_to_db(
|
73 |
-
stftaudio_magnitude, ref=np.max)
|
74 |
-
|
75 |
return stftaudio_magnitude_db, stftaudio_phase
|
76 |
|
77 |
-
|
78 |
def numpy_audio_to_matrix_spectrogram(numpy_audio, dim_square_spec, n_fft, hop_length_fft):
|
79 |
-
"""
|
80 |
-
|
81 |
-
(nb_frame,dim_square_spec,dim_square_spec)"""
|
82 |
-
|
83 |
nb_audio = numpy_audio.shape[0]
|
84 |
-
|
85 |
m_mag_db = np.zeros((nb_audio, dim_square_spec, dim_square_spec))
|
86 |
m_phase = np.zeros((nb_audio, dim_square_spec, dim_square_spec), dtype=complex)
|
87 |
|
88 |
for i in range(nb_audio):
|
89 |
m_mag_db[i, :, :], m_phase[i, :, :] = audio_to_magnitude_db_and_phase(
|
90 |
n_fft, hop_length_fft, numpy_audio[i])
|
91 |
-
|
92 |
return m_mag_db, m_phase
|
93 |
|
94 |
-
|
95 |
def magnitude_db_and_phase_to_audio(frame_length, hop_length_fft, stftaudio_magnitude_db, stftaudio_phase):
|
96 |
-
"""
|
97 |
-
|
98 |
stftaudio_magnitude_rev = librosa.db_to_amplitude(stftaudio_magnitude_db, ref=1.0)
|
99 |
-
|
100 |
-
# taking magnitude and phase of audio
|
101 |
audio_reverse_stft = stftaudio_magnitude_rev * stftaudio_phase
|
102 |
-
audio_reconstruct = librosa.
|
103 |
-
|
104 |
return audio_reconstruct
|
105 |
|
106 |
-
def matrix_spectrogram_to_numpy_audio(m_mag_db, m_phase, frame_length, hop_length_fft)
|
107 |
-
"""
|
108 |
-
|
109 |
list_audio = []
|
110 |
-
|
111 |
nb_spec = m_mag_db.shape[0]
|
112 |
|
113 |
for i in range(nb_spec):
|
114 |
-
|
115 |
-
|
116 |
list_audio.append(audio_reconstruct)
|
117 |
-
|
118 |
return np.vstack(list_audio)
|
119 |
|
120 |
def scaled_in(matrix_spec):
|
121 |
-
"
|
122 |
-
matrix_spec = (matrix_spec + 46)/50
|
123 |
return matrix_spec
|
124 |
|
125 |
def scaled_ou(matrix_spec):
|
126 |
-
"
|
127 |
-
matrix_spec = (matrix_spec -6
|
128 |
return matrix_spec
|
129 |
|
130 |
def inv_scaled_in(matrix_spec):
|
131 |
-
"
|
132 |
matrix_spec = matrix_spec * 50 - 46
|
133 |
return matrix_spec
|
134 |
|
135 |
def inv_scaled_ou(matrix_spec):
|
136 |
-
"
|
137 |
matrix_spec = matrix_spec * 82 + 6
|
138 |
return matrix_spec
|
139 |
|
140 |
-
|
141 |
def prediction(weights_path, name_model, audio_dir_prediction, dir_save_prediction, audio_input_prediction,
|
142 |
-
audio_output_prediction, sample_rate, min_duration, frame_length, hop_length_frame, n_fft, hop_length_fft):
|
143 |
-
"""
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
# load json and create model
|
148 |
-
json_file = open(weights_path+'/'+name_model+'.json', 'r')
|
149 |
loaded_model_json = json_file.read()
|
150 |
json_file.close()
|
151 |
loaded_model = model_from_json(loaded_model_json)
|
152 |
-
|
153 |
-
loaded_model.load_weights(weights_path+'/'+name_model+'.h5')
|
154 |
print("Loaded model from disk")
|
155 |
|
156 |
-
#
|
157 |
-
audio = audio_files_to_numpy(
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
|
|
|
|
163 |
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
|
168 |
-
|
|
|
|
|
|
|
|
|
169 |
X_in = scaled_in(m_amp_db_audio)
|
170 |
-
#Reshape for prediction
|
171 |
-
X_in = X_in.reshape(X_in.shape[0],X_in.shape[1],X_in.shape[2],1)
|
172 |
-
|
|
|
173 |
X_pred = loaded_model.predict(X_in)
|
174 |
-
#Rescale back the noise
|
175 |
inv_sca_X_pred = inv_scaled_ou(X_pred)
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
print(frame_length)
|
182 |
-
print(hop_length_fft)
|
183 |
audio_denoise_recons = matrix_spectrogram_to_numpy_audio(X_denoise, m_pha_audio, frame_length, hop_length_fft)
|
184 |
-
|
|
|
185 |
nb_samples = audio_denoise_recons.shape[0]
|
186 |
-
|
187 |
-
|
188 |
-
#
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
def denoise_audio(
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
weights_path = os.path.abspath("./")
|
208 |
name_model = "model_unet"
|
209 |
audio_dir_prediction = os.path.abspath("./")
|
210 |
dir_save_prediction = os.path.abspath("./")
|
211 |
audio_output_prediction = "test.wav"
|
212 |
-
audio_input_prediction = [
|
213 |
-
sample_rate = 8000
|
214 |
min_duration = t
|
215 |
frame_length = 8064
|
216 |
hop_length_frame = 8064
|
217 |
n_fft = 255
|
218 |
hop_length_fft = 63
|
219 |
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
228 |
examples = [
|
229 |
[os.path.abspath("crowdNoise.wav")],
|
230 |
[os.path.abspath("CrowdNoise2.wav")],
|
231 |
[os.path.abspath("whiteNoise.wav")]
|
232 |
]
|
233 |
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
|
|
|
|
|
|
|
|
|
|
|
9 |
import gradio as gr
|
10 |
|
11 |
def audio_to_audio_frame_stack(sound_data, frame_length, hop_length_frame):
|
12 |
+
"""This function takes an audio and splits it into several frames
|
13 |
+
returning a numpy matrix of size (nb_frame, frame_length)."""
|
|
|
14 |
sequence_sample_length = sound_data.shape[0]
|
15 |
+
sound_data_list = [
|
16 |
+
sound_data[start:start + frame_length]
|
17 |
+
for start in range(0, sequence_sample_length - frame_length + 1, hop_length_frame)
|
18 |
+
]
|
19 |
sound_data_array = np.vstack(sound_data_list)
|
|
|
20 |
return sound_data_array
|
21 |
|
|
|
22 |
def audio_files_to_numpy(audio_dir, list_audio_files, sample_rate, frame_length, hop_length_frame, min_duration):
|
23 |
+
"""This function takes audio files in a directory and merges them
|
24 |
+
into a numpy matrix of size (nb_frame, frame_length) for a sliding window of size hop_length_frame."""
|
|
|
25 |
list_sound_array = []
|
|
|
26 |
for file in list_audio_files:
|
|
|
27 |
y, sr = librosa.load(os.path.join(audio_dir, file), sr=sample_rate)
|
28 |
total_duration = librosa.get_duration(y=y, sr=sr)
|
29 |
|
30 |
+
if total_duration >= min_duration:
|
31 |
+
list_sound_array.append(audio_to_audio_frame_stack(y, frame_length, hop_length_frame))
|
|
|
32 |
else:
|
33 |
+
print(f"The following file {os.path.join(audio_dir,file)} is below the min duration")
|
34 |
+
return np.vstack(list_sound_array) if len(list_sound_array) > 0 else np.array([])
|
|
|
|
|
|
|
35 |
|
36 |
def blend_noise_randomly(voice, noise, nb_samples, frame_length):
|
37 |
+
"""This function randomly blends voice frames with noise frames."""
|
|
|
|
|
|
|
38 |
prod_voice = np.zeros((nb_samples, frame_length))
|
39 |
prod_noise = np.zeros((nb_samples, frame_length))
|
40 |
prod_noisy_voice = np.zeros((nb_samples, frame_length))
|
|
|
49 |
|
50 |
return prod_voice, prod_noise, prod_noisy_voice
|
51 |
|
|
|
52 |
def audio_to_magnitude_db_and_phase(n_fft, hop_length_fft, audio):
|
53 |
+
"""Convert audio into a spectrogram, returning the magnitude in dB and the phase."""
|
|
|
|
|
54 |
stftaudio = librosa.stft(audio, n_fft=n_fft, hop_length=hop_length_fft)
|
55 |
stftaudio_magnitude, stftaudio_phase = librosa.magphase(stftaudio)
|
56 |
+
stftaudio_magnitude_db = librosa.amplitude_to_db(stftaudio_magnitude, ref=np.max)
|
|
|
|
|
|
|
57 |
return stftaudio_magnitude_db, stftaudio_phase
|
58 |
|
|
|
59 |
def numpy_audio_to_matrix_spectrogram(numpy_audio, dim_square_spec, n_fft, hop_length_fft):
|
60 |
+
"""Takes a numpy array of shape (nb_frame, frame_length) and returns
|
61 |
+
the matrix spectrogram for amplitude in dB and phase (each of shape (nb_frame, dim_square_spec, dim_square_spec))."""
|
|
|
|
|
62 |
nb_audio = numpy_audio.shape[0]
|
|
|
63 |
m_mag_db = np.zeros((nb_audio, dim_square_spec, dim_square_spec))
|
64 |
m_phase = np.zeros((nb_audio, dim_square_spec, dim_square_spec), dtype=complex)
|
65 |
|
66 |
for i in range(nb_audio):
|
67 |
m_mag_db[i, :, :], m_phase[i, :, :] = audio_to_magnitude_db_and_phase(
|
68 |
n_fft, hop_length_fft, numpy_audio[i])
|
|
|
69 |
return m_mag_db, m_phase
|
70 |
|
|
|
71 |
def magnitude_db_and_phase_to_audio(frame_length, hop_length_fft, stftaudio_magnitude_db, stftaudio_phase):
|
72 |
+
"""Reverts a dB spectrogram to audio."""
|
|
|
73 |
stftaudio_magnitude_rev = librosa.db_to_amplitude(stftaudio_magnitude_db, ref=1.0)
|
|
|
|
|
74 |
audio_reverse_stft = stftaudio_magnitude_rev * stftaudio_phase
|
75 |
+
audio_reconstruct = librosa.istft(audio_reverse_stft, hop_length=hop_length_fft, length=frame_length)
|
|
|
76 |
return audio_reconstruct
|
77 |
|
78 |
+
def matrix_spectrogram_to_numpy_audio(m_mag_db, m_phase, frame_length, hop_length_fft):
|
79 |
+
"""Reverts matrix spectrograms to a stacked numpy audio array."""
|
|
|
80 |
list_audio = []
|
|
|
81 |
nb_spec = m_mag_db.shape[0]
|
82 |
|
83 |
for i in range(nb_spec):
|
84 |
+
audio_reconstruct = magnitude_db_and_phase_to_audio(
|
85 |
+
frame_length, hop_length_fft, m_mag_db[i], m_phase[i])
|
86 |
list_audio.append(audio_reconstruct)
|
|
|
87 |
return np.vstack(list_audio)
|
88 |
|
89 |
def scaled_in(matrix_spec):
|
90 |
+
"""Global scaling applied to noisy voice spectrograms (scale between -1 and 1)."""
|
91 |
+
matrix_spec = (matrix_spec + 46) / 50
|
92 |
return matrix_spec
|
93 |
|
94 |
def scaled_ou(matrix_spec):
|
95 |
+
"""Global scaling applied to noise model spectrograms (scale between -1 and 1)."""
|
96 |
+
matrix_spec = (matrix_spec - 6) / 82
|
97 |
return matrix_spec
|
98 |
|
99 |
def inv_scaled_in(matrix_spec):
|
100 |
+
"""Inverse global scaling applied to noisy voices spectrograms."""
|
101 |
matrix_spec = matrix_spec * 50 - 46
|
102 |
return matrix_spec
|
103 |
|
104 |
def inv_scaled_ou(matrix_spec):
|
105 |
+
"""Inverse global scaling applied to noise model spectrograms."""
|
106 |
matrix_spec = matrix_spec * 82 + 6
|
107 |
return matrix_spec
|
108 |
|
|
|
109 |
def prediction(weights_path, name_model, audio_dir_prediction, dir_save_prediction, audio_input_prediction,
|
110 |
+
audio_output_prediction, sample_rate, min_duration, frame_length, hop_length_frame, n_fft, hop_length_fft):
|
111 |
+
"""Use pretrained weights to denoise a noisy voice audio, and save the result."""
|
112 |
+
# Load model from JSON + weights
|
113 |
+
json_file = open(os.path.join(weights_path, name_model + '.json'), 'r')
|
|
|
|
|
|
|
114 |
loaded_model_json = json_file.read()
|
115 |
json_file.close()
|
116 |
loaded_model = model_from_json(loaded_model_json)
|
117 |
+
loaded_model.load_weights(os.path.join(weights_path, name_model + '.h5'))
|
|
|
118 |
print("Loaded model from disk")
|
119 |
|
120 |
+
# Convert audio file(s) to numpy frames
|
121 |
+
audio = audio_files_to_numpy(
|
122 |
+
audio_dir_prediction,
|
123 |
+
audio_input_prediction,
|
124 |
+
sample_rate,
|
125 |
+
frame_length,
|
126 |
+
hop_length_frame,
|
127 |
+
min_duration
|
128 |
+
)
|
129 |
|
130 |
+
if audio.size == 0:
|
131 |
+
print("No valid audio frames found, skipping prediction.")
|
132 |
+
return
|
133 |
|
134 |
+
dim_square_spec = int(n_fft / 2) + 1
|
135 |
+
# Create amplitude (dB) and phase
|
136 |
+
m_amp_db_audio, m_pha_audio = numpy_audio_to_matrix_spectrogram(audio, dim_square_spec, n_fft, hop_length_fft)
|
137 |
+
|
138 |
+
# Global scaling to get distribution -1 to 1
|
139 |
X_in = scaled_in(m_amp_db_audio)
|
140 |
+
# Reshape for model prediction
|
141 |
+
X_in = X_in.reshape(X_in.shape[0], X_in.shape[1], X_in.shape[2], 1)
|
142 |
+
|
143 |
+
# Predict using loaded network
|
144 |
X_pred = loaded_model.predict(X_in)
|
145 |
+
# Rescale back the predicted noise
|
146 |
inv_sca_X_pred = inv_scaled_ou(X_pred)
|
147 |
+
|
148 |
+
# Remove noise model from noisy speech
|
149 |
+
X_denoise = m_amp_db_audio - inv_sca_X_pred[:, :, :, 0]
|
150 |
+
|
151 |
+
# Reconstruct audio
|
|
|
|
|
152 |
audio_denoise_recons = matrix_spectrogram_to_numpy_audio(X_denoise, m_pha_audio, frame_length, hop_length_fft)
|
153 |
+
|
154 |
+
# Combine all frames into a single 1D array, scaled up
|
155 |
nb_samples = audio_denoise_recons.shape[0]
|
156 |
+
denoise_long = audio_denoise_recons.reshape(1, nb_samples * frame_length) * 10
|
157 |
+
|
158 |
+
# Save to disk
|
159 |
+
sf.write(audio_output_prediction, denoise_long[0, :], sample_rate)
|
160 |
+
print(f"Saved denoised audio to: {audio_output_prediction}")
|
161 |
+
|
162 |
+
def denoise_audio(audio_input):
|
163 |
+
"""
|
164 |
+
Gradio callback function to denoise audio.
|
165 |
+
`audio_input` can be None, a dict {"name", "sample_rate", "data"}, or a tuple (sr, data).
|
166 |
+
"""
|
167 |
+
# 1) Handle None
|
168 |
+
if audio_input is None:
|
169 |
+
print("No audio was provided.")
|
170 |
+
return None
|
171 |
+
|
172 |
+
# 2) Handle dict vs tuple
|
173 |
+
if isinstance(audio_input, dict):
|
174 |
+
sr = audio_input["sample_rate"]
|
175 |
+
data = audio_input["data"]
|
176 |
+
else:
|
177 |
+
sr, data = audio_input
|
178 |
+
|
179 |
+
# Write out to a temp file
|
180 |
+
temp_wav = "temp.wav"
|
181 |
+
sf.write(temp_wav, data, sr)
|
182 |
+
|
183 |
+
# Compute duration
|
184 |
+
len_data = len(data)
|
185 |
+
t = len_data / sr # duration in seconds
|
186 |
+
print("t:", t)
|
187 |
+
|
188 |
+
# Paths & config
|
189 |
weights_path = os.path.abspath("./")
|
190 |
name_model = "model_unet"
|
191 |
audio_dir_prediction = os.path.abspath("./")
|
192 |
dir_save_prediction = os.path.abspath("./")
|
193 |
audio_output_prediction = "test.wav"
|
194 |
+
audio_input_prediction = [temp_wav]
|
195 |
+
sample_rate = 8000 # model was trained at 8k
|
196 |
min_duration = t
|
197 |
frame_length = 8064
|
198 |
hop_length_frame = 8064
|
199 |
n_fft = 255
|
200 |
hop_length_fft = 63
|
201 |
|
202 |
+
# Run prediction (denoising)
|
203 |
+
prediction(weights_path, name_model,
|
204 |
+
audio_dir_prediction,
|
205 |
+
dir_save_prediction,
|
206 |
+
audio_input_prediction,
|
207 |
+
audio_output_prediction,
|
208 |
+
sample_rate,
|
209 |
+
min_duration,
|
210 |
+
frame_length,
|
211 |
+
hop_length_frame,
|
212 |
+
n_fft,
|
213 |
+
hop_length_fft)
|
214 |
+
|
215 |
+
# Return the path to the denoised file so Gradio can play it
|
216 |
+
return os.path.abspath(audio_output_prediction)
|
217 |
+
|
218 |
+
# Example pre-loaded sample files
|
219 |
examples = [
|
220 |
[os.path.abspath("crowdNoise.wav")],
|
221 |
[os.path.abspath("CrowdNoise2.wav")],
|
222 |
[os.path.abspath("whiteNoise.wav")]
|
223 |
]
|
224 |
|
225 |
+
iface = gr.Interface(
|
226 |
+
fn=denoise_audio,
|
227 |
+
inputs="audio",
|
228 |
+
outputs="audio",
|
229 |
+
title="Audio to Denoised Audio Application",
|
230 |
+
description=(
|
231 |
+
"A simple application to denoise audio speech using a UNet model. "
|
232 |
+
"Upload your own audio or click one of the examples to load it."
|
233 |
+
),
|
234 |
+
article="""
|
235 |
+
<div style="text-align: center">
|
236 |
+
<p>All you need to do is to upload or record an audio file and hit 'Submit'.
|
237 |
+
After processing, you can click 'Play' to hear the denoised audio.
|
238 |
+
The audio is saved in WAV format.</p>
|
239 |
+
</div>
|
240 |
+
""",
|
241 |
+
examples=examples
|
242 |
+
)
|
243 |
+
|
244 |
+
iface.launch()
|