File size: 1,604 Bytes
55638b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
import gradio as gr
from autotab import AutoTab
import json
def auto_tabulator_completion(
in_file,
instruction,
max_examples,
model_name,
generation_config,
save_every,
):
output_file_name = "ouput.xlsx"
autotab = AutoTab(
in_file_path=in_file.name,
instruction=instruction,
out_file_path=output_file_name,
max_examples=max_examples,
model_name=model_name,
api_key="sk-exhahhjfqyanmwewndukcqtrpegfdbwszkjucvcpajdufiah",
base_url="https://public-beta-api.siliconflow.cn/v1",
generation_config=json.loads(generation_config),
save_every=save_every,
)
autotab.run()
return output_file_name, autotab.data[:15]
# Gradio interface
inputs = [
gr.File(label="Input Excel File"),
gr.Textbox(
value="You are a helpful assistant. Help me finish the task.",
label="Instruction",
),
gr.Slider(value=5, minimum=1, maximum=100, label="Max Examples"),
gr.Textbox(value="Qwen/Qwen2-7B-Instruct", label="Model Name"),
gr.Textbox(
value='{"temperature": 0, "max_tokens": 128}',
label="Generation Config in Dict",
),
gr.Slider(value=10, minimum=1, maximum=1000, label="Save Every N Steps"),
]
outputs = [
gr.File(label="Output Excel File"),
gr.Dataframe(label="First 15 rows."),
]
gr.Interface(
fn=auto_tabulator_completion,
inputs=inputs,
outputs=outputs,
title="Auto Tabulator Completion",
description="Automatically complete missing output values in tabular data based on in-context learning.",
).launch()
|