Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,105 +1,111 @@
|
|
1 |
import pandas as pd
|
2 |
-
|
3 |
-
|
4 |
-
df = pd.read_csv('./Mental_Health_FAQ.csv')
|
5 |
-
|
6 |
-
import pandas as pd
|
7 |
-
from sentence_transformers import SentenceTransformer
|
8 |
-
# Assuming your DataFrame is already loaded as 'df'
|
9 |
-
|
10 |
-
context_data = []
|
11 |
-
|
12 |
-
for i in range(len(df)):
|
13 |
-
context = f"Question: {df.iloc[i]['Questions']} Answer: {df.iloc[i]['Answers']}"
|
14 |
-
context_data.append(context)
|
15 |
-
# print(context_data)
|
16 |
-
|
17 |
-
# Embed the contexts
|
18 |
-
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
19 |
-
context_embeddings = embedding_model.encode(context_data)
|
20 |
-
|
21 |
-
#print(f"Number of contexts: {len(context_data)}")
|
22 |
-
#print(f"Shape of embeddings: {context_embeddings.shape}")
|
23 |
-
|
24 |
-
|
25 |
import os
|
26 |
-
|
27 |
-
# Get the secret key from the environment
|
28 |
-
groq_key = os.environ.get('new_chatAPI_key')
|
29 |
-
|
30 |
-
## LLM used for RAG
|
31 |
from langchain_groq import ChatGroq
|
32 |
-
|
33 |
-
llm = ChatGroq(model="llama-3.3-70b-versatile",api_key=groq_key)
|
34 |
-
|
35 |
-
## Embedding model!
|
36 |
from langchain_huggingface import HuggingFaceEmbeddings
|
37 |
-
embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
|
38 |
-
|
39 |
-
# create vector store!
|
40 |
from langchain_chroma import Chroma
|
41 |
-
|
42 |
-
vectorstore = Chroma(
|
43 |
-
collection_name="medical_dataset_store",
|
44 |
-
embedding_function=embed_model,
|
45 |
-
)
|
46 |
-
|
47 |
-
# add data to vector nstore
|
48 |
-
vectorstore.add_texts(context_data)
|
49 |
-
|
50 |
-
retriever = vectorstore.as_retriever()
|
51 |
-
|
52 |
from langchain_core.prompts import PromptTemplate
|
53 |
-
|
54 |
-
template = ("""You are a mental health professional.
|
55 |
-
Use the provided context to answer the question.
|
56 |
-
If you don't know the answer, say so. Explain your answer in detail.
|
57 |
-
Do not discuss the context in your response; just provide the answer directly.
|
58 |
-
|
59 |
-
Context: {context}
|
60 |
-
|
61 |
-
Question: {question}
|
62 |
-
|
63 |
-
Answer:""")
|
64 |
-
|
65 |
-
rag_prompt = PromptTemplate.from_template(template)
|
66 |
-
|
67 |
from langchain_core.output_parsers import StrOutputParser
|
68 |
from langchain_core.runnables import RunnablePassthrough
|
69 |
-
|
70 |
-
rag_chain = (
|
71 |
-
{"context": retriever, "question": RunnablePassthrough()}
|
72 |
-
| rag_prompt
|
73 |
-
| llm
|
74 |
-
| StrOutputParser()
|
75 |
-
)
|
76 |
-
|
77 |
import gradio as gr
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
]
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
|
104 |
if __name__ == "__main__":
|
105 |
demo.launch()
|
|
|
|
1 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import os
|
3 |
+
from sentence_transformers import SentenceTransformer
|
|
|
|
|
|
|
|
|
4 |
from langchain_groq import ChatGroq
|
|
|
|
|
|
|
|
|
5 |
from langchain_huggingface import HuggingFaceEmbeddings
|
|
|
|
|
|
|
6 |
from langchain_chroma import Chroma
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
from langchain_core.prompts import PromptTemplate
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
from langchain_core.output_parsers import StrOutputParser
|
9 |
from langchain_core.runnables import RunnablePassthrough
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
import gradio as gr
|
11 |
+
import logging
|
12 |
+
|
13 |
+
# Set up basic logging (optional, but useful)
|
14 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
15 |
+
|
16 |
+
|
17 |
+
try:
|
18 |
+
# Load the data - check for the file path
|
19 |
+
df = pd.read_csv('./Mental_Health_FAQ.csv')
|
20 |
+
|
21 |
+
context_data = []
|
22 |
+
for i in range(len(df)):
|
23 |
+
context = f"Question: {df.iloc[i]['Questions']} Answer: {df.iloc[i]['Answers']}"
|
24 |
+
context_data.append(context)
|
25 |
+
|
26 |
+
# Embed the contexts
|
27 |
+
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
28 |
+
context_embeddings = embedding_model.encode(context_data)
|
29 |
+
|
30 |
+
|
31 |
+
# Get the API Key - important to check this is set
|
32 |
+
groq_key = os.environ.get('new_chatAPI_key')
|
33 |
+
if not groq_key:
|
34 |
+
raise ValueError("Groq API key not found in environment variables.")
|
35 |
+
|
36 |
+
|
37 |
+
# LLM used for RAG
|
38 |
+
llm = ChatGroq(model="llama-3.3-70b-versatile",api_key=groq_key)
|
39 |
+
|
40 |
+
# Embedding model
|
41 |
+
embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
|
42 |
+
|
43 |
+
|
44 |
+
# Create the Vector Store!
|
45 |
+
vectorstore = Chroma(
|
46 |
+
collection_name="medical_dataset_store",
|
47 |
+
embedding_function=embed_model,
|
48 |
+
)
|
49 |
+
|
50 |
+
# Add data to vector store
|
51 |
+
vectorstore.add_texts(context_data)
|
52 |
+
|
53 |
+
retriever = vectorstore.as_retriever()
|
54 |
+
|
55 |
+
# Create the prompt template
|
56 |
+
template = ("""You are a mental health professional.
|
57 |
+
Use the provided context to answer the question.
|
58 |
+
If you don't know the answer, say so. Explain your answer in detail.
|
59 |
+
Do not discuss the context in your response; just provide the answer directly.
|
60 |
+
Context: {context}
|
61 |
+
Question: {question}
|
62 |
+
Answer:""")
|
63 |
+
|
64 |
+
rag_prompt = PromptTemplate.from_template(template)
|
65 |
+
rag_chain = (
|
66 |
+
{"context": retriever, "question": RunnablePassthrough()}
|
67 |
+
| rag_prompt
|
68 |
+
| llm
|
69 |
+
| StrOutputParser()
|
70 |
+
)
|
71 |
+
|
72 |
+
|
73 |
+
def rag_memory_stream(message, history):
|
74 |
+
partial_text = ""
|
75 |
+
for new_text in rag_chain.stream(message):
|
76 |
+
partial_text += new_text
|
77 |
+
yield partial_text
|
78 |
+
|
79 |
+
examples = [
|
80 |
+
"I am not in a good mood",
|
81 |
+
"what is the possible symptompts of depression?"
|
82 |
+
]
|
83 |
+
|
84 |
+
description = "Real-time AI App with Groq API and LangChain to Answer medical questions"
|
85 |
+
title = "ThriveTalk Expert :) Try me!"
|
86 |
+
demo = gr.ChatInterface(fn=rag_memory_stream,
|
87 |
+
type="messages",
|
88 |
+
title=title,
|
89 |
+
description=description,
|
90 |
+
fill_height=True,
|
91 |
+
examples=examples,
|
92 |
+
theme="glass",
|
93 |
+
)
|
94 |
+
|
95 |
+
except Exception as e:
|
96 |
+
logging.error(f"An error occurred during initialization: {e}")
|
97 |
+
# If there is an error then return a dummy error text to tell user
|
98 |
+
def error_function(message, history):
|
99 |
+
yield "An error has occurred. Please check the logs"
|
100 |
+
demo = gr.ChatInterface(fn=error_function,
|
101 |
+
type="messages",
|
102 |
+
title="ERROR :(",
|
103 |
+
description="Please check the logs",
|
104 |
+
fill_height=True,
|
105 |
+
theme="glass",
|
106 |
+
)
|
107 |
|
108 |
|
109 |
if __name__ == "__main__":
|
110 |
demo.launch()
|
111 |
+
|