Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -6,7 +6,15 @@ from transformers import AutoModelForImageSegmentation
|
|
6 |
import torch
|
7 |
from torchvision import transforms
|
8 |
|
9 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
transform_image = transforms.Compose(
|
11 |
[
|
12 |
transforms.Resize((1024, 1024)),
|
@@ -15,42 +23,33 @@ transform_image = transforms.Compose(
|
|
15 |
]
|
16 |
)
|
17 |
|
18 |
-
@spaces.GPU
|
19 |
def fn(image):
|
20 |
-
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
21 |
-
"ZhengPeng7/BiRefNet", trust_remote_code=True
|
22 |
-
)
|
23 |
-
birefnet.to("cuda")
|
24 |
-
|
25 |
im = load_img(image, output_type="pil")
|
26 |
im = im.convert("RGB")
|
27 |
origin = im.copy()
|
28 |
-
processed_image = process(im
|
29 |
return (processed_image, origin)
|
30 |
|
31 |
-
|
|
|
|
|
|
|
32 |
image_size = image.size
|
33 |
-
input_images = transform_image(image).unsqueeze(0).to("
|
34 |
-
#
|
35 |
with torch.no_grad():
|
36 |
-
preds =
|
37 |
pred = preds[0].squeeze()
|
38 |
pred_pil = transforms.ToPILImage()(pred)
|
39 |
mask = pred_pil.resize(image_size)
|
40 |
image.putalpha(mask)
|
41 |
return image
|
42 |
|
43 |
-
@spaces.GPU
|
44 |
def process_file(f):
|
45 |
-
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
46 |
-
"ZhengPeng7/BiRefNet", trust_remote_code=True
|
47 |
-
)
|
48 |
-
birefnet.to("cuda")
|
49 |
-
|
50 |
name_path = f.rsplit(".", 1)[0] + ".png"
|
51 |
im = load_img(f, output_type="pil")
|
52 |
im = im.convert("RGB")
|
53 |
-
transparent = process(im
|
54 |
transparent.save(name_path)
|
55 |
return name_path
|
56 |
|
@@ -61,7 +60,7 @@ image_file_upload = gr.Image(label="Upload an image", type="filepath")
|
|
61 |
url_input = gr.Textbox(label="Paste an image URL")
|
62 |
output_file = gr.File(label="Output PNG File")
|
63 |
|
64 |
-
#
|
65 |
chameleon = load_img("butterfly.jpg", output_type="pil")
|
66 |
url_example = "https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg"
|
67 |
|
|
|
6 |
import torch
|
7 |
from torchvision import transforms
|
8 |
|
9 |
+
# GPU ์ค์ ์ CPU๋ก ๋ณ๊ฒฝ
|
10 |
+
# GPU ์ค์ ์ ์ญ์ ํ๊ฑฐ๋ "cuda"๋ฅผ "cpu"๋ก ๋ณ๊ฒฝ
|
11 |
+
# torch.set_float32_matmul_precision("high")๋ CPU์์ ํ์ ์์.
|
12 |
+
|
13 |
+
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
14 |
+
"ZhengPeng7/BiRefNet", trust_remote_code=True
|
15 |
+
)
|
16 |
+
birefnet.to("cpu") # GPU -> CPU๋ก ๋ณ๊ฒฝ
|
17 |
+
|
18 |
transform_image = transforms.Compose(
|
19 |
[
|
20 |
transforms.Resize((1024, 1024)),
|
|
|
23 |
]
|
24 |
)
|
25 |
|
|
|
26 |
def fn(image):
|
|
|
|
|
|
|
|
|
|
|
27 |
im = load_img(image, output_type="pil")
|
28 |
im = im.convert("RGB")
|
29 |
origin = im.copy()
|
30 |
+
processed_image = process(im)
|
31 |
return (processed_image, origin)
|
32 |
|
33 |
+
# @spaces.GPU ๋ฐ์ฝ๋ ์ดํฐ ์ ๊ฑฐ
|
34 |
+
# CPU ํ๊ฒฝ์์ ๋์ํ๋๋ก ์ค์
|
35 |
+
|
36 |
+
def process(image):
|
37 |
image_size = image.size
|
38 |
+
input_images = transform_image(image).unsqueeze(0).to("cpu") # GPU -> CPU๋ก ๋ณ๊ฒฝ
|
39 |
+
# Prediction
|
40 |
with torch.no_grad():
|
41 |
+
preds = birefnet(input_images)[-1].sigmoid().cpu()
|
42 |
pred = preds[0].squeeze()
|
43 |
pred_pil = transforms.ToPILImage()(pred)
|
44 |
mask = pred_pil.resize(image_size)
|
45 |
image.putalpha(mask)
|
46 |
return image
|
47 |
|
|
|
48 |
def process_file(f):
|
|
|
|
|
|
|
|
|
|
|
49 |
name_path = f.rsplit(".", 1)[0] + ".png"
|
50 |
im = load_img(f, output_type="pil")
|
51 |
im = im.convert("RGB")
|
52 |
+
transparent = process(im)
|
53 |
transparent.save(name_path)
|
54 |
return name_path
|
55 |
|
|
|
60 |
url_input = gr.Textbox(label="Paste an image URL")
|
61 |
output_file = gr.File(label="Output PNG File")
|
62 |
|
63 |
+
# Example images
|
64 |
chameleon = load_img("butterfly.jpg", output_type="pil")
|
65 |
url_example = "https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg"
|
66 |
|