File size: 4,819 Bytes
b0f7449
 
 
 
 
 
a5ba7b9
b0f7449
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5ba7b9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import gradio as gr
import pandas as pd
import numpy as np
import requests
from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration
from stable_baselines3 import PPO
import gym  # Ensure gym is imported
from gym import spaces
from stable_baselines3.common.vec_env import DummyVecEnv
import plotly.graph_objects as go

# 1. Set up Groq API Integration
GROQ_API_KEY = "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"  # Replace with your API key
groq_api_url = "https://api.groq.com/v1/traffic/optimize"  # Replace with correct endpoint

headers = {
    'Authorization': f'Bearer {GROQ_API_KEY}',
}

# Load Traffic Data from CSV (Replace with uploaded file handling for Gradio)
def load_traffic_data(file_path):
    data = pd.read_csv(file_path)
    return data

# 3. Function to interact with Groq API to get traffic optimization strategies
def get_optimization_strategy(traffic_data):
    traffic_data = [int(x) if isinstance(x, np.int64) else x for x in traffic_data]
    response = requests.post(groq_api_url, json={'traffic_data': traffic_data}, headers=headers)
    if response.status_code == 200:
        optimization_strategy = response.json()
        return optimization_strategy
    else:
        return f"Error: {response.status_code}, {response.text}"

# 4. Create a Custom Traffic Environment for RL Simulation
class TrafficEnv(gym.Env):
    def __init__(self, traffic_data):
        super(TrafficEnv, self).__init__()
        
        self.action_space = spaces.Discrete(3)  # 3 possible actions
        self.observation_space = spaces.Box(low=0, high=50, shape=(5,), dtype=np.float32)
        self.current_state = np.zeros(5)  # Start with zero traffic data
        self.traffic_data = traffic_data

    def reset(self):
        self.current_state = np.array(self.traffic_data.iloc[0, 3:7], dtype=np.float32)  # Use first row for starting state
        return self.current_state

    def step(self, action):
        if action == 0:  # Decrease traffic
            self.current_state = self.current_state - np.random.randint(1, 5, size=self.current_state.shape)
        elif action == 1:  # No change
            self.current_state = self.current_state
        elif action == 2:  # Increase traffic
            self.current_state = self.current_state + np.random.randint(1, 5, size=self.current_state.shape)
        self.current_state = np.clip(self.current_state, 0, None)
        reward = -np.sum(self.current_state)  # Minimize traffic (negative sum as reward)
        done = np.sum(self.current_state) < 50
        return self.current_state, reward, done, {}

def create_environment(traffic_data):
    return DummyVecEnv([lambda: TrafficEnv(traffic_data)])

# Visualize Traffic Flow using Plotly
def visualize_traffic_flow(traffic_data):
    locations = ['CarCount', 'BikeCount', 'BusCount', 'TruckCount']
    traffic_flow = traffic_data.iloc[0, 3:7]  # Use first row of traffic counts
    fig = go.Figure(data=[go.Bar(x=locations, y=traffic_flow)])
    fig.update_layout(title='Real-Time Traffic Flow', xaxis_title='Location', yaxis_title='Traffic Volume')
    return fig

# RAG-based Optimization Strategy using Hugging Face Transformers
def rag_based_optimization(query):
    tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-nq")
    model = RagSequenceForGeneration.from_pretrained("facebook/rag-sequence-nq")

    inputs = tokenizer(query, return_tensors="pt")
    generated_ids = model.generate(input_ids=inputs['input_ids'])
    generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
    return generated_text

# Gradio Interface for the App
def optimize_traffic(traffic_file, query):
    # Load Traffic Data from uploaded file
    traffic_data = load_traffic_data(traffic_file.name)

    # Get optimization strategy from Groq API
    optimization_strategy = get_optimization_strategy(traffic_data.iloc[0, 3:7].values.tolist())

    # Visualize traffic flow
    traffic_fig = visualize_traffic_flow(traffic_data)

    # Get RAG-based optimization strategy
    rag_strategy = rag_based_optimization(query)

    return optimization_strategy, traffic_fig, rag_strategy

# Create Gradio Interface
iface = gr.Interface(
    fn=optimize_traffic,
    inputs=[
        gr.File(label="Upload Traffic Data CSV"),
        gr.Textbox(label="Enter Optimization Query", value="Optimize traffic flow for downtown area.")
    ],
    outputs=[
        gr.JSON(label="Optimization Strategy from Groq API"),
        gr.Plot(label="Traffic Flow Visualization"),
        gr.Textbox(label="RAG-based Optimization Strategy")
    ],
    live=True,
    title="Traffic Optimization App",
    description="This app optimizes traffic flow using RL, Groq API, and RAG model-based optimization strategies."
)

if __name__ == "__main__":
    iface.launch()