Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -73,6 +73,12 @@ def read_document(file):
|
|
73 |
except Exception as e:
|
74 |
return f"Error reading file: {e}"
|
75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
def chat_document(file, question):
|
77 |
content = str(read_document(file))
|
78 |
if len(content) > 32000:
|
@@ -103,6 +109,58 @@ def chat_document(file, question):
|
|
103 |
yield output
|
104 |
|
105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
with gr.Blocks() as demo:
|
107 |
with gr.Tabs():
|
108 |
with gr.TabItem("Document Reader"):
|
@@ -121,5 +179,13 @@ with gr.Blocks() as demo:
|
|
121 |
title="Document Chat",
|
122 |
description="Upload a document and ask questions about its content."
|
123 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
demo.launch()
|
|
|
73 |
except Exception as e:
|
74 |
return f"Error reading file: {e}"
|
75 |
|
76 |
+
def split_content(content, chunk_size=32000):
|
77 |
+
chunks = []
|
78 |
+
for i in range(0, len(content), chunk_size):
|
79 |
+
chunks.append(content[i:i + chunk_size])
|
80 |
+
return chunks
|
81 |
+
|
82 |
def chat_document(file, question):
|
83 |
content = str(read_document(file))
|
84 |
if len(content) > 32000:
|
|
|
109 |
yield output
|
110 |
|
111 |
|
112 |
+
def chat_document_v2(file, question):
|
113 |
+
content = str(read_document(file))
|
114 |
+
content = content.replace('\n', ' ')
|
115 |
+
content = content.replace('\r', ' ')
|
116 |
+
content = content.replace('\t', ' ')
|
117 |
+
content = content.strip()
|
118 |
+
|
119 |
+
chunks = split_content(content)
|
120 |
+
|
121 |
+
# Define system prompt for the chat API
|
122 |
+
system_prompt = """
|
123 |
+
You are a helpful and informative assistant that can answer questions based on the content of documents.
|
124 |
+
You will receive the content of a document and a question about it.
|
125 |
+
Your task is to provide a concise and accurate answer to the question based solely on the provided document content.
|
126 |
+
If the document does not contain enough information to answer the question, simply state that you cannot answer the question based on the provided information.
|
127 |
+
"""
|
128 |
+
|
129 |
+
all_answers = []
|
130 |
+
for chunk in chunks:
|
131 |
+
message = f"""[INST] [SYSTEM] {system_prompt}
|
132 |
+
Document Content: {chunk[:32000]}
|
133 |
+
Question: {question}
|
134 |
+
Answer:"""
|
135 |
+
|
136 |
+
stream = client.text_generation(message, max_new_tokens=4096, stream=True, details=True, return_full_text=False)
|
137 |
+
output = ""
|
138 |
+
for response in stream:
|
139 |
+
if not response.token.text == "</s>":
|
140 |
+
output += response.token.text
|
141 |
+
all_answers.append(output)
|
142 |
+
|
143 |
+
# Summarize all answers using Mistral
|
144 |
+
summary_prompt = """
|
145 |
+
You are a helpful and informative assistant that can summarize multiple answers related to the same question.
|
146 |
+
You will receive a list of answers to a question, and your task is to generate a concise and comprehensive summary that incorporates the key information from all the answers.
|
147 |
+
Avoid repeating information unnecessarily and focus on providing the most relevant and accurate summary based on the provided answers.
|
148 |
+
|
149 |
+
Answers:
|
150 |
+
"""
|
151 |
+
|
152 |
+
all_answers_str = "\n".join(all_answers)
|
153 |
+
summary_message = f"""[INST] {summary_prompt}
|
154 |
+
{all_answers_str[:30000]}
|
155 |
+
Summary:"""
|
156 |
+
|
157 |
+
stream = client.text_generation(summary_message, max_new_tokens=4096, stream=True, details=True, return_full_text=False)
|
158 |
+
output = ""
|
159 |
+
for response in stream:
|
160 |
+
if not response.token.text == "</s>":
|
161 |
+
output += response.token.text
|
162 |
+
yield output
|
163 |
+
|
164 |
with gr.Blocks() as demo:
|
165 |
with gr.Tabs():
|
166 |
with gr.TabItem("Document Reader"):
|
|
|
179 |
title="Document Chat",
|
180 |
description="Upload a document and ask questions about its content."
|
181 |
)
|
182 |
+
with gr.TabItem("Document Chat V2"):
|
183 |
+
iface3 = gr.Interface(
|
184 |
+
fn=chat_document_v2,
|
185 |
+
inputs=[gr.File(label="Upload a Document"), gr.Textbox(label="Question")],
|
186 |
+
outputs=gr.Textbox(label="Answer"),
|
187 |
+
title="Document Chat V2",
|
188 |
+
description="Upload a document and ask questions about its content (using chunk-based approach)."
|
189 |
+
)
|
190 |
|
191 |
demo.launch()
|