KingNish commited on
Commit
e27d06b
1 Parent(s): 3d46c63

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -131
app.py CHANGED
@@ -3,7 +3,6 @@ from openpyxl import load_workbook
3
  from pptx import Presentation
4
  import gradio as gr
5
  import io
6
- from huggingface_hub import InferenceClient
7
  import re
8
  import zipfile
9
  import xml.etree.ElementTree as ET
@@ -11,10 +10,6 @@ import filetype
11
 
12
  # Constants
13
  CHUNK_SIZE = 32000
14
- MAX_NEW_TOKENS = 4096
15
-
16
- # Initialize the Mistral chat model
17
- client = InferenceClient("mistralai/Mistral-Nemo-Instruct-2407")
18
 
19
  # --- Utility Functions ---
20
 
@@ -168,131 +163,23 @@ def read_document(file, clean=True):
168
  return f"Error reading file: {e}", 0
169
 
170
 
171
-
172
- # --- Chat Functions ---
173
-
174
- def generate_mistral_response(message):
175
- """Generates a response from the Mistral API."""
176
- stream = client.text_generation(
177
- message,
178
- max_new_tokens=MAX_NEW_TOKENS,
179
- stream=True,
180
- details=True,
181
- return_full_text=False
182
- )
183
- output = ""
184
- for response in stream:
185
- if not response.token.text == "</s>":
186
- output += response.token.text
187
- yield output
188
-
189
-
190
- def chat_document(file, question, clean=True):
191
- """Chats with a document using a single Mistral API call."""
192
- content, length = read_document(file, clean)
193
- if length > CHUNK_SIZE:
194
- content = content[:CHUNK_SIZE] # Limit to max chunk size
195
-
196
- system_prompt = """
197
- You are a helpful and informative assistant that can answer questions based on the content of documents.
198
- You will receive the content of a document and a question about it.
199
- Your task is to provide a concise and accurate answer to the question based solely on the provided document content.
200
- If the document does not contain enough information to answer the question, simply state that you cannot answer the question based on the provided information.
201
- """
202
-
203
- message = f"""[INST] [SYSTEM] {system_prompt}
204
- Document Content: {content}
205
- Question: {question}
206
- Answer:"""
207
-
208
- yield from generate_mistral_response(message)
209
-
210
-
211
- def chat_document_v2(file, question, clean=True):
212
- """Chats with a document using chunk-based Mistral API calls and summarizes the answers."""
213
- content, length = read_document(file, clean)
214
- chunks = split_content(content)
215
-
216
- system_prompt = """
217
- You are a helpful and informative assistant that can answer questions based on the content of documents.
218
- You will receive the content of a document and a question about it.
219
- Your task is to provide a concise and accurate answer to the question based solely on the provided document content.
220
- If the document does not contain enough information to answer the question, simply state that you cannot answer the question based on the provided information.
221
- """
222
-
223
- all_answers = []
224
- for chunk in chunks:
225
- message = f"""[INST] [SYSTEM] {system_prompt}
226
- Document Content: {chunk[:CHUNK_SIZE]}
227
- Question: {question}
228
- Answer:"""
229
-
230
- response = ""
231
- for stream_response in generate_mistral_response(message):
232
- response = stream_response # Update with latest response
233
- all_answers.append(response)
234
-
235
- # Summarize all answers using Mistral
236
- summary_prompt = """
237
- You are a helpful and informative assistant that can summarize multiple answers related to the same question.
238
- You will receive a list of answers to a question, and your task is to generate a concise and comprehensive summary that incorporates the key information from all the answers.
239
- Avoid repeating information unnecessarily and focus on providing the most relevant and accurate summary based on the provided answers.
240
-
241
- Answers:
242
- """
243
-
244
- all_answers_str = "\n".join(all_answers)
245
- summary_message = f"""[INST] [SYSTEM] {summary_prompt}
246
- {all_answers_str[:30000]}
247
- Summary:"""
248
-
249
- yield from generate_mistral_response(summary_message)
250
-
251
-
252
  # --- Gradio Interface ---
253
 
254
- with gr.Blocks() as demo:
255
- with gr.Tabs():
256
- with gr.TabItem("Document Reader"):
257
- iface1 = gr.Interface(
258
- fn=read_document,
259
- inputs=[
260
- gr.File(label="Upload a Document"),
261
- gr.Checkbox(label="Clean Text", value=True),
262
- ],
263
- outputs=[
264
- gr.Textbox(label="Document Content"),
265
- gr.Number(label="Document Length (characters)"),
266
- ],
267
- title="Document Reader",
268
- description="Upload a document (PDF, XLSX, PPTX, TXT, CSV, DOC, DOCX and Code or text file) to read its content.",
269
- concurrency_limit = None
270
- )
271
- with gr.TabItem("Document Chat"):
272
- iface2 = gr.Interface(
273
- fn=chat_document,
274
- inputs=[
275
- gr.File(label="Upload a Document"),
276
- gr.Textbox(label="Question"),
277
- gr.Checkbox(label="Clean and Compress Text", value=True),
278
- ],
279
- outputs=gr.Markdown(label="Answer"),
280
- title="Document Chat",
281
- description="Upload a document and ask questions about its content.",
282
- concurrency_limit = None
283
- )
284
- with gr.TabItem("Document Chat V2"):
285
- iface3 = gr.Interface(
286
- fn=chat_document_v2,
287
- inputs=[
288
- gr.File(label="Upload a Document"),
289
- gr.Textbox(label="Question"),
290
- gr.Checkbox(label="Clean Text", value=True),
291
- ],
292
- outputs=gr.Markdown(label="Answer"),
293
- title="Document Chat V2",
294
- description="Upload a document and ask questions about its content (using chunk-based approach).",
295
- concurrency_limit =None
296
- )
297
-
298
- demo.launch()
 
3
  from pptx import Presentation
4
  import gradio as gr
5
  import io
 
6
  import re
7
  import zipfile
8
  import xml.etree.ElementTree as ET
 
10
 
11
  # Constants
12
  CHUNK_SIZE = 32000
 
 
 
 
13
 
14
  # --- Utility Functions ---
15
 
 
163
  return f"Error reading file: {e}", 0
164
 
165
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
166
  # --- Gradio Interface ---
167
 
168
+ iface = gr.Interface(
169
+ fn=read_document,
170
+ inputs=[
171
+ gr.File(label="Upload a Document"),
172
+ gr.Checkbox(label="Clean Text", value=True),
173
+ ],
174
+ outputs=[
175
+ gr.Textbox(label="Document Content"),
176
+ gr.Number(label="Document Length (characters)"),
177
+ ],
178
+ title="Better Document Reader for Hugging Face Chat Tools",
179
+ description="Upload a document (PDF, XLSX, PPTX, TXT, CSV, DOC, DOCX and Code or text file) to read its content."
180
+ "This tool is designed for use with Hugging Face Chat Tools: "
181
+ "[https://hf.co/chat/tools/66ed8236a35891a61e2bfcf2](https://hf.co/chat/tools/66ed8236a35891a61e2bfcf2)",
182
+ concurrency_limit = None
183
+ )
184
+
185
+ iface.launch()