KingNish commited on
Commit
0f8ec45
1 Parent(s): a4e6463

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +200 -0
app.py ADDED
@@ -0,0 +1,200 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+ import uuid
3
+ import os
4
+ import math
5
+ import random
6
+ import spaces
7
+ import gradio as gr
8
+ import torch
9
+ from PIL import Image, ImageOps
10
+ from diffusers import StableDiffusionInstructPix2PixPipeline
11
+ from huggingface_hub import InferenceClient
12
+
13
+ help_text = """
14
+ To optimize image editing results:
15
+ - Adjust the **Image CFG weight** if the image isn't changing enough or is changing too much. Lower it to allow bigger changes, or raise it to preserve original details.
16
+ - Modify the **Text CFG weight** to influence how closely the edit follows text instructions. Increase it to adhere more to the text, or decrease it for subtler changes.
17
+ - Experiment with different **random seeds** and **CFG values** for varied outcomes.
18
+ - **Rephrase your instructions** for potentially better results.
19
+ - **Increase the number of steps** for enhanced edits.
20
+ - For better facial details, especially if they're small, **crop the image** to enlarge the face's presence.
21
+ """
22
+
23
+ model_id = "timbrooks/instruct-pix2pix"
24
+
25
+ from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
26
+
27
+ if not torch.cuda.is_available():
28
+ DESCRIPTION += "\n<p>Running on CPU 🥶 This demo may not work on CPU.</p>"
29
+
30
+ MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
31
+
32
+ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
33
+
34
+ if torch.cuda.is_available():
35
+ pipe = StableDiffusionXLPipeline.from_pretrained(
36
+ "sd-community/sdxl-flash",
37
+ torch_dtype=torch.float16,
38
+ use_safetensors=True,
39
+ add_watermarker=False
40
+ )
41
+ pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
42
+
43
+ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
44
+ if randomize_seed:
45
+ seed = random.randint(0, 999999)
46
+ return seed
47
+
48
+ def resize_image(image, output_size=(512, 512)):
49
+ # Calculate aspect ratios
50
+ target_aspect = output_size[0] / output_size[1] # Aspect ratio of the desired size
51
+ image_aspect = image.width / image.height # Aspect ratio of the original image
52
+
53
+ # Resize then crop if the original image is larger
54
+ if image_aspect > target_aspect:
55
+ new_height = output_size[1]
56
+ new_width = int(new_height * image_aspect)
57
+ resized_image = image.resize((new_width, new_height), Image.LANCZOS)
58
+ left = (new_width - output_size[0]) / 2
59
+ top = 0
60
+ right = (new_width + output_size[0]) / 2
61
+ bottom = output_size[1]
62
+ else:
63
+ new_width = output_size[0]
64
+ new_height = int(new_width / image_aspect)
65
+ resized_image = image.resize((new_width, new_height), Image.LANCZOS)
66
+ left = 0
67
+ top = (new_height - output_size[1]) / 2
68
+ right = output_size[0]
69
+ bottom = (new_height + output_size[1]) / 2
70
+ cropped_image = resized_image.crop((left, top, right, bottom))
71
+ return cropped_image
72
+
73
+ pipe2 = StableDiffusionInstructPix2PixPipeline.from_pretrained(model_id, torch_dtype=torch.float16, safety_checker=None).to("cuda")
74
+
75
+ @spaces.GPU(duration=30, queue=False)
76
+ def king(type = "Image Editing",
77
+ input_image = None,
78
+ instruction: str = "Eiffel tower",
79
+ steps: int = 8,
80
+ randomize_seed: bool = False,
81
+ seed: int = 24,
82
+ text_cfg_scale: float = 7.3,
83
+ image_cfg_scale: float = 1.7,
84
+ width: int = 1024,
85
+ height: int = 1024,
86
+ guidance_scale: float = 3,
87
+ use_resolution_binning: bool = True,
88
+ progress=gr.Progress(track_tqdm=True),
89
+ ):
90
+ if type=="Image Generation" :
91
+ pipe.to(device)
92
+ seed = int(randomize_seed_fn(seed, randomize_seed))
93
+ generator = torch.Generator().manual_seed(seed)
94
+
95
+ options = {
96
+ "prompt":instruction,
97
+ "width":width,
98
+ "height":height,
99
+ "guidance_scale":guidance_scale,
100
+ "num_inference_steps":steps,
101
+ "generator":generator,
102
+ "use_resolution_binning":use_resolution_binning,
103
+ "output_type":"pil",
104
+ }
105
+
106
+ output_image = pipe(**options).images[0]
107
+ return seed, output_image
108
+ else:
109
+ seed = int(randomize_seed_fn(seed, randomize_seed))
110
+ text_cfg_scale = text_cfg_scale
111
+ image_cfg_scale = image_cfg_scale
112
+ input_image = input_image
113
+
114
+ steps=steps*6
115
+ generator = torch.manual_seed(seed)
116
+ output_image = pipe2(
117
+ instruction, image=input_image,
118
+ guidance_scale=text_cfg_scale, image_guidance_scale=image_cfg_scale,
119
+ num_inference_steps=steps, generator=generator).images[0]
120
+ return seed, output_image
121
+
122
+ def response(instruction, input_image=None):
123
+ client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
124
+
125
+ generate_kwargs = dict(
126
+ max_new_tokens=5,
127
+ )
128
+
129
+ system="[SYSTEM] You will be provided with text, and your task is to classify task is image generation or image editing answer with only task do not say anything else and stop as soon as possible. [TEXT]"
130
+
131
+ formatted_prompt = system + instruction + "[TASK]"
132
+ stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
133
+ output = ""
134
+ for response in stream:
135
+ if not response.token.text == "</s>":
136
+ output += response.token.text
137
+
138
+ if input_image is None:
139
+ output="Image Generation"
140
+
141
+ if "editing" in output:
142
+ output = "Image Editing"
143
+ else:
144
+ output = "Image Generation"
145
+ return output
146
+
147
+ css = '''
148
+ .gradio-container{max-width: 600px !important}
149
+ h1{text-align:center}
150
+ footer {
151
+ visibility: hidden
152
+ }
153
+ '''
154
+
155
+ with gr.Blocks(css=css) as demo:
156
+ gr.Markdown("# Image Generator Pro")
157
+ with gr.Row():
158
+ with gr.Column(scale=4):
159
+ instruction = gr.Textbox(lines=1, label="Instruction", interactive=True)
160
+ with gr.Column(scale=1):
161
+ generate_button = gr.Button("Generate")
162
+ with gr.Column(scale=1):
163
+ type = gr.Dropdown(["Image Generation","Image Editing"], label="Task", value="Image Generation",interactive=True, visible=False)
164
+
165
+ with gr.Row():
166
+ input_image = gr.Image(label="Image", type="pil", interactive=True)
167
+
168
+ with gr.Row():
169
+ text_cfg_scale = gr.Number(value=7.3, step=0.1, label="Text CFG", interactive=True)
170
+ image_cfg_scale = gr.Number(value=1.7, step=0.1,label="Image CFG", interactive=True)
171
+ steps = gr.Number(value=8, precision=0, label="Steps", interactive=True)
172
+ randomize_seed = gr.Radio(
173
+ ["Fix Seed", "Randomize Seed"],
174
+ value="Randomize Seed",
175
+ type="index",
176
+ show_label=False,
177
+ interactive=True,
178
+ )
179
+ seed = gr.Number(value=1371, precision=0, label="Seed", interactive=True)
180
+
181
+ gr.Markdown(help_text)
182
+
183
+ instruction.change(fn=response, inputs=[instruction,input_image], outputs=type, queue=False)
184
+
185
+ generate_button.click(
186
+ fn=king,
187
+ inputs=[type,
188
+ input_image,
189
+ instruction,
190
+ steps,
191
+ randomize_seed,
192
+ seed,
193
+ text_cfg_scale,
194
+ image_cfg_scale,
195
+ ],
196
+ outputs=[seed, input_image],
197
+ queue=False
198
+ )
199
+
200
+ demo.queue(max_size=99999).launch()