Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import argparse | |
import os | |
import time | |
from os import path | |
from safetensors.torch import load_file | |
from huggingface_hub import hf_hub_download | |
cache_path = path.join(path.dirname(path.abspath(__file__)), "models") | |
os.environ["TRANSFORMERS_CACHE"] = cache_path | |
os.environ["HF_HUB_CACHE"] = cache_path | |
os.environ["HF_HOME"] = cache_path | |
import gradio as gr | |
import torch | |
from diffusers import StableDiffusionXLPipeline, LCMScheduler | |
# from scheduling_tcd import TCDScheduler | |
torch.backends.cuda.matmul.allow_tf32 = True | |
class timer: | |
def __init__(self, method_name="timed process"): | |
self.method = method_name | |
def __enter__(self): | |
self.start = time.time() | |
print(f"{self.method} starts") | |
def __exit__(self, exc_type, exc_val, exc_tb): | |
end = time.time() | |
print(f"{self.method} took {str(round(end - self.start, 2))}s") | |
if not path.exists(cache_path): | |
os.makedirs(cache_path, exist_ok=True) | |
pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.bfloat16) | |
pipe.to(device="cuda", dtype=torch.bfloat16) | |
unet_state = load_file(hf_hub_download("ByteDance/Hyper-SD", "Hyper-SDXL-1step-Unet.safetensors"), device="cuda") | |
pipe.unet.load_state_dict(unet_state) | |
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config, timestep_spacing ="trailing") | |
with gr.Blocks() as demo: | |
gr.Markdown(DESCRIPTION) | |
with gr.Row(equal_height=False): | |
with gr.Group(): | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0) | |
result = gr.Gallery(label="Result", columns=NUM_IMAGES_PER_PROMPT, show_label=False) | |
with gr.Accordion("Advanced options", open=False): | |
with gr.Group(): | |
with gr.Row(): | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(visible=True): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=8192, | |
step=32, | |
value=2048, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=8192, | |
step=32, | |
value=2048, | |
) | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
def process_image( height, width, prompt, seed, randomize_seed): | |
global pipe | |
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"): | |
return pipe( | |
prompt=str,, | |
generator=torch.Generator().manual_seed(int(seed)), | |
num_inference_steps=1, | |
guidance_scale=0., | |
height=int(height), | |
width=int(width), | |
timesteps=[800], | |
randomize_seed: bool = False, | |
use_resolution_binning: bool = True, | |
progress=gr.Progress(track_tqdm=True), | |
).images | |
seed = int(randomize_seed_fn(seed, randomize_seed)) | |
generator = torch.Generator().manual_seed(seed) | |
reactive_controls = [ height, width, prompt, seed, randomize_seed] | |
btn.click(process_image, inputs=reactive_controls, outputs=[output]) | |
if __name__ == "__main__": | |
demo.launch() | |
DESCRIPTION = """ # Instant Image | |
### Super fast text to Image Generator. | |
### <span style='color: red;'>You may change the steps from 4 to 8, if you didn't get satisfied results. | |
### First Image processing takes time then images generate faster. | |
""" | |
if not torch.cuda.is_available(): | |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>" | |
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "1") == "1" | |
examples = [ | |
"A Monkey with a happy face in the Sahara desert.", | |
"Eiffel Tower was Made up of ICE.", | |
"Color photo of a corgi made of transparent glass, standing on the riverside in Yosemite National Park.", | |
"A close-up photo of a woman. She wore a blue coat with a gray dress underneath and has blue eyes.", | |
"A litter of golden retriever puppies playing in the snow. Their heads pop out of the snow, covered in.", | |
"an astronaut sitting in a diner, eating fries, cinematic, analog film", | |
] | |