KingNish's picture
Update app.py
ebdfef4 verified
import json
import subprocess
import time
from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
import gradio as gr
from huggingface_hub import hf_hub_download
llm = None
llm_model = None
# Download the new model
hf_hub_download(
repo_id="hugging-quants/Llama-3.2-1B-Instruct-Q4_K_M-GGUF",
filename="llama-3.2-1b-instruct-q4_k_m.gguf",
local_dir="./models"
)
def get_messages_formatter_type(model_name):
return MessagesFormatterType.LLAMA_3
def respond(
message,
history: list[tuple[str, str]],
model,
system_message,
max_tokens,
temperature,
top_p,
top_k,
repeat_penalty,
):
global llm
global llm_model
chat_template = get_messages_formatter_type(model)
if llm is None or llm_model != model:
llm = Llama(
model_path=f"models/{model}",
n_gpu_layers=0, # Adjust based on your GPU
n_batch=32398, # Adjust based on your RAM
n_ctx=512, # Adjust based on your RAM and desired context length
)
llm_model = model
provider = LlamaCppPythonProvider(llm)
agent = LlamaCppAgent(
provider,
system_prompt=f"{system_message}",
predefined_messages_formatter_type=chat_template,
debug_output=True
)
settings = provider.get_provider_default_settings()
settings.temperature = temperature
settings.top_k = top_k
settings.top_p = top_p
settings.max_tokens = max_tokens
settings.repeat_penalty = repeat_penalty
settings.stream = True
messages = BasicChatHistory()
for msn in history:
user = {
'role': Roles.user,
'content': msn[0]
}
assistant = {
'role': Roles.assistant,
'content': msn[1]
}
messages.add_message(user)
messages.add_message(assistant)
start_time = time.time()
token_count = 0
stream = agent.get_chat_response(
message,
llm_sampling_settings=settings,
chat_history=messages,
returns_streaming_generator=True,
print_output=False
)
outputs = ""
for output in stream:
outputs += output
token_count += len(output.split())
yield outputs
end_time = time.time()
latency = end_time - start_time
speed = token_count / (end_time - start_time)
print(f"Latency: {latency} seconds")
print(f"Speed: {speed} tokens/second")
description = """<p><center>
<a href="https://huggingface.co/hugging-quants/Llama-3.2-1B-Instruct-Q4_K_M-GGUF" target="_blank">[Meta Llama 3.2 (1B)]</a>
Meta Llama 3.2 (1B) is a multilingual large language model (LLM) optimized for conversational dialogue use cases, including agentic retrieval and summarization tasks. It outperforms many open-source and closed chat models on industry benchmarks, and is intended for commercial and research use in multiple languages.
</center></p>
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Dropdown([
"llama-3.2-1b-instruct-q4_k_m.gguf"
],
value="llama-3.2-1b-instruct-q4_k_m.gguf",
label="Model"
),
gr.TextArea(value="""You are Meta Llama 3.2 (1B), an advanced AI assistant created by Meta. Your capabilities include:
1. Complex reasoning and problem-solving
2. Multilingual understanding and generation
3. Creative and analytical writing
4. Code understanding and generation
5. Task decomposition and step-by-step guidance
6. Summarization and information extraction
Always strive for accuracy, clarity, and helpfulness in your responses. If you're unsure about something, express your uncertainty. Use the following format for your responses:
""", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=2.0,
value=0.9,
step=0.05,
label="Top-p",
),
gr.Slider(
minimum=0,
maximum=100,
value=1,
step=1,
label="Top-k",
),
gr.Slider(
minimum=0.0,
maximum=2.0,
value=1.1,
step=0.1,
label="Repetition penalty",
),
],
theme=gr.themes.Soft(primary_hue="violet", secondary_hue="violet", neutral_hue="gray",font=[gr.themes.GoogleFont("Exo"), "ui-sans-serif", "system-ui", "sans-serif"]).set(
body_background_fill_dark="#16141c",
block_background_fill_dark="#16141c",
block_border_width="1px",
block_title_background_fill_dark="#1e1c26",
input_background_fill_dark="#292733",
button_secondary_background_fill_dark="#24212b",
border_color_accent_dark="#343140",
border_color_primary_dark="#343140",
background_fill_secondary_dark="#16141c",
color_accent_soft_dark="transparent",
code_background_fill_dark="#292733",
),
title="Meta Llama 3.2 (1B)",
description=description,
chatbot=gr.Chatbot(
scale=1,
likeable=True,
show_copy_button=True
),
examples=[
["Hello! Can you introduce yourself?"],
["What's the capital of France?"],
["Can you explain the concept of photosynthesis?"],
["Write a short story about a robot learning to paint."],
["Explain the difference between machine learning and deep learning."],
["Summarize the key points of climate change and its global impact."],
["Explain quantum computing to a 10-year-old."],
["Design a step-by-step meal plan for someone trying to lose weight and build muscle."]
],
cache_examples=False,
autofocus=False,
concurrency_limit=None
)
if __name__ == "__main__":
demo.launch()