KingNish commited on
Commit
14d257f
1 Parent(s): f0b6227

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -7
app.py CHANGED
@@ -17,7 +17,7 @@ model_id = "llava-hf/llava-interleave-qwen-0.5b-hf"
17
 
18
  processor = LlavaProcessor.from_pretrained(model_id)
19
 
20
- model = LlavaForConditionalGeneration.from_pretrained(model_id, low_cpu_mem_usage=True)
21
  model.to("cpu")
22
 
23
 
@@ -82,7 +82,6 @@ client_llama = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
82
  # Define the main chat function
83
  def respond(message, history):
84
  func_caller = []
85
- vqa = ""
86
 
87
  user_prompt = message
88
  # Handle image processing
@@ -107,7 +106,7 @@ def respond(message, history):
107
  ]
108
 
109
  message_text = message["text"]
110
- func_caller.append({"role": "user", "content": f'[SYSTEM]You are a helpful assistant. You have access to the following functions: \n {str(functions_metadata)}\n\nTo use these functions respond with:\n<functioncall> {{ "name": "function_name", "arguments": {{ "arg_1": "value_1", "arg_1": "value_1", ... }} }} </functioncall> [USER] {message_text} {vqa}'})
111
 
112
  response = client_gemma.chat_completion(func_caller, max_tokens=150)
113
  response = str(response)
@@ -134,7 +133,7 @@ def respond(message, history):
134
  for msg in history:
135
  messages += f"\n<|im_start|>user\n{str(msg[0])}<|im_end|>"
136
  messages += f"\n<|im_start|>assistant\n{str(msg[1])}<|im_end|>"
137
- messages+=f"\n<|im_start|>user\n{message_text} {vqa}<|im_end|>\n<|im_start|>web_result\n{web2}<|im_end|>\n<|im_start|>assistant\n"
138
  stream = client_mixtral.text_generation(messages, max_new_tokens=2000, do_sample=True, stream=True, details=True, return_full_text=False)
139
  output = ""
140
  for response in stream:
@@ -146,7 +145,7 @@ def respond(message, history):
146
  gr.Info("Generating Image, Please wait 10 sec...")
147
  seed = random.randint(1, 99999)
148
  query = query.replace(" ", "%20")
149
- image = f"![](https://image.pollinations.ai/prompt/{query}?seed={seed})"
150
  yield image
151
  time.sleep(8)
152
  gr.Info("We are going to Update Our Image Generation Engine to more powerful ones in Next Update. ThankYou")
@@ -167,7 +166,7 @@ def respond(message, history):
167
  for msg in history:
168
  messages += f"\n<|start_header_id|>user\n{str(msg[0])}<|end_header_id|>"
169
  messages += f"\n<|start_header_id|>assistant\n{str(msg[1])}<|end_header_id|>"
170
- messages+=f"\n<|start_header_id|>user\n{message_text} {vqa}<|end_header_id|>\n<|start_header_id|>assistant\n"
171
  stream = client_llama.text_generation(messages, max_new_tokens=2000, do_sample=True, stream=True, details=True, return_full_text=False)
172
  output = ""
173
  for response in stream:
@@ -179,7 +178,7 @@ def respond(message, history):
179
  for msg in history:
180
  messages += f"\n<|start_header_id|>user\n{str(msg[0])}<|end_header_id|>"
181
  messages += f"\n<|start_header_id|>assistant\n{str(msg[1])}<|end_header_id|>"
182
- messages+=f"\n<|start_header_id|>user\n{message_text} {vqa}<|end_header_id|>\n<|start_header_id|>assistant\n"
183
  stream = client_llama.text_generation(messages, max_new_tokens=2000, do_sample=True, stream=True, details=True, return_full_text=False)
184
  output = ""
185
  for response in stream:
 
17
 
18
  processor = LlavaProcessor.from_pretrained(model_id)
19
 
20
+ model = LlavaForConditionalGeneration.from_pretrained(model_id)
21
  model.to("cpu")
22
 
23
 
 
82
  # Define the main chat function
83
  def respond(message, history):
84
  func_caller = []
 
85
 
86
  user_prompt = message
87
  # Handle image processing
 
106
  ]
107
 
108
  message_text = message["text"]
109
+ func_caller.append({"role": "user", "content": f'[SYSTEM]You are a helpful assistant. You have access to the following functions: \n {str(functions_metadata)}\n\nTo use these functions respond with:\n<functioncall> {{ "name": "function_name", "arguments": {{ "arg_1": "value_1", "arg_1": "value_1", ... }} }} </functioncall> [USER] {message_text}'})
110
 
111
  response = client_gemma.chat_completion(func_caller, max_tokens=150)
112
  response = str(response)
 
133
  for msg in history:
134
  messages += f"\n<|im_start|>user\n{str(msg[0])}<|im_end|>"
135
  messages += f"\n<|im_start|>assistant\n{str(msg[1])}<|im_end|>"
136
+ messages+=f"\n<|im_start|>user\n{message_text}<|im_end|>\n<|im_start|>web_result\n{web2}<|im_end|>\n<|im_start|>assistant\n"
137
  stream = client_mixtral.text_generation(messages, max_new_tokens=2000, do_sample=True, stream=True, details=True, return_full_text=False)
138
  output = ""
139
  for response in stream:
 
145
  gr.Info("Generating Image, Please wait 10 sec...")
146
  seed = random.randint(1, 99999)
147
  query = query.replace(" ", "%20")
148
+ image = f"![](https://image.pollinations.ai/prompt/{message_text}{query}?seed={seed})"
149
  yield image
150
  time.sleep(8)
151
  gr.Info("We are going to Update Our Image Generation Engine to more powerful ones in Next Update. ThankYou")
 
166
  for msg in history:
167
  messages += f"\n<|start_header_id|>user\n{str(msg[0])}<|end_header_id|>"
168
  messages += f"\n<|start_header_id|>assistant\n{str(msg[1])}<|end_header_id|>"
169
+ messages+=f"\n<|start_header_id|>user\n{message_text}<|end_header_id|>\n<|start_header_id|>assistant\n"
170
  stream = client_llama.text_generation(messages, max_new_tokens=2000, do_sample=True, stream=True, details=True, return_full_text=False)
171
  output = ""
172
  for response in stream:
 
178
  for msg in history:
179
  messages += f"\n<|start_header_id|>user\n{str(msg[0])}<|end_header_id|>"
180
  messages += f"\n<|start_header_id|>assistant\n{str(msg[1])}<|end_header_id|>"
181
+ messages+=f"\n<|start_header_id|>user\n{message_text}<|end_header_id|>\n<|start_header_id|>assistant\n"
182
  stream = client_llama.text_generation(messages, max_new_tokens=2000, do_sample=True, stream=True, details=True, return_full_text=False)
183
  output = ""
184
  for response in stream: