KingNish commited on
Commit
4e7357a
·
verified ·
1 Parent(s): ca93a15

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -40
app.py CHANGED
@@ -17,11 +17,9 @@ model_id = "llava-hf/llava-interleave-qwen-0.5b-hf"
17
 
18
  processor = LlavaProcessor.from_pretrained(model_id)
19
 
20
- model = LlavaForConditionalGeneration.from_pretrained(model_id)
21
  model.to("cpu")
22
 
23
- def replace_video_with_images(text, frames):
24
- return text.replace("<video>", "<image>" * frames)
25
 
26
  def sample_frames(video_file) :
27
  try:
@@ -90,51 +88,26 @@ def respond(message, history):
90
  vqa = ""
91
 
92
  user_prompt = message
93
- message_text = message["text"]
94
-
95
  # Handle image processing
96
- if message["files"]:
 
97
  txt = user_prompt["text"]
98
  img = user_prompt["files"]
99
-
100
- if len(message["files"]) == 1:
101
- image = [message["files"][0]]
102
- elif len(message["files"]) > 1:
103
- image = [msg for msg in message["files"]]
104
 
105
  video_extensions = ("avi", "mp4", "mov", "mkv", "flv", "wmv", "mjpeg", "wav", "gif", "webm", "m4v", "3gp")
106
  image_extensions = Image.registered_extensions()
107
  image_extensions = tuple([ex for ex, f in image_extensions.items()])
108
-
109
- if len(image) == 1:
110
- if image[0].endswith(video_extensions):
111
- gr.Info(f"Analyzing video")
112
- image = sample_frames(image[0])
113
- image_tokens = "<image>" * int(len(image))
114
- prompt = f"<|im_start|>user {image_tokens}\n{user_prompt}<|im_end|><|im_start|>assistant"
115
- elif image[0].endswith(image_extensions):
116
- gr.Info("Analyzing image")
117
- image = Image.open(image[0]).convert("RGB")
118
- prompt = f"<|im_start|>user <image>\n{user_prompt}<|im_end|><|im_start|>assistant"
119
-
120
- elif len(image) > 1:
121
- image_list = []
122
-
123
- for img in image:
124
- if img.endswith(image_extensions):
125
- gr.Info("Analyzing image")
126
- img = Image.open(img).convert("RGB")
127
- image_list.append(img)
128
-
129
- elif img.endswith(video_extensions):
130
- gr.Info(f"Analyzing video")
131
- frames = sample_frames(img)
132
- for frame in frames:
133
- image_list.append(frame)
134
-
135
- image_tokens = "<image>" * len(image_list)
136
  prompt = f"<|im_start|>user {image_tokens}\n{user_prompt}<|im_end|><|im_start|>assistant"
137
- image = image_list
 
 
 
 
138
 
139
  inputs = processor(prompt, image, return_tensors="pt")
140
  streamer = TextIteratorStreamer(processor, skip_prompt=True, **{"skip_special_tokens": True})
@@ -143,6 +116,7 @@ def respond(message, history):
143
 
144
  thread = Thread(target=model.generate, kwargs=generation_kwargs)
145
  thread.start()
 
146
 
147
  buffer = ""
148
  for new_text in streamer:
@@ -158,6 +132,7 @@ def respond(message, history):
158
  {"type": "function", "function": {"name": "image_qna", "description": "Answer question asked by user related to image", "parameters": {"type": "object", "properties": {"query": {"type": "string", "description": "Question by user"}}, "required": ["query"]}}},
159
  ]
160
 
 
161
  func_caller.append({"role": "user", "content": f'[SYSTEM]You are a helpful assistant. You have access to the following functions: \n {str(functions_metadata)}\n\nTo use these functions respond with:\n<functioncall> {{ "name": "function_name", "arguments": {{ "arg_1": "value_1", "arg_1": "value_1", ... }} }} </functioncall> [USER] {message} {vqa}'})
162
 
163
  response = client_gemma.chat_completion(func_caller, max_tokens=150)
@@ -199,6 +174,7 @@ def respond(message, history):
199
  query = query.replace(" ", "%20")
200
  image = f"![](https://image.pollinations.ai/prompt/{query}?seed={seed})"
201
  yield image
 
202
  gr.Info("We are going to Update Our Image Generation Engine to more powerful ones in Next Update. ThankYou")
203
  elif json_data["name"] == "image_qna":
204
  messages = f"<|start_header_id|>system\nYou are OpenGPT 4o mini a helpful assistant made by KingNish. You are provide with both images and captions and Your task is to answer of user with help of caption provided. Answer in human style and show emotions.<|end_header_id|>"
 
17
 
18
  processor = LlavaProcessor.from_pretrained(model_id)
19
 
20
+ model = LlavaForConditionalGeneration.from_pretrained(model_id, low_cpu_mem_usage=True)
21
  model.to("cpu")
22
 
 
 
23
 
24
  def sample_frames(video_file) :
25
  try:
 
88
  vqa = ""
89
 
90
  user_prompt = message
 
 
91
  # Handle image processing
92
+ if message["files"]:
93
+ image = user_prompt["files"][-1]
94
  txt = user_prompt["text"]
95
  img = user_prompt["files"]
 
 
 
 
 
96
 
97
  video_extensions = ("avi", "mp4", "mov", "mkv", "flv", "wmv", "mjpeg", "wav", "gif", "webm", "m4v", "3gp")
98
  image_extensions = Image.registered_extensions()
99
  image_extensions = tuple([ex for ex, f in image_extensions.items()])
100
+
101
+ if image.endswith(video_extensions):
102
+ gr.Info(f"Analyzing {video_extensions} file")
103
+ image = sample_frames(image)
104
+ image_tokens = "<image>" * int(len(image))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
105
  prompt = f"<|im_start|>user {image_tokens}\n{user_prompt}<|im_end|><|im_start|>assistant"
106
+
107
+ elif image.endswith(image_extensions):
108
+ gr.Info("Analyzing image")
109
+ image = Image.open(image).convert("RGB")
110
+ prompt = f"<|im_start|>user <image>\n{user_prompt}<|im_end|><|im_start|>assistant"
111
 
112
  inputs = processor(prompt, image, return_tensors="pt")
113
  streamer = TextIteratorStreamer(processor, skip_prompt=True, **{"skip_special_tokens": True})
 
116
 
117
  thread = Thread(target=model.generate, kwargs=generation_kwargs)
118
  thread.start()
119
+ gr.Info("Generating output")
120
 
121
  buffer = ""
122
  for new_text in streamer:
 
132
  {"type": "function", "function": {"name": "image_qna", "description": "Answer question asked by user related to image", "parameters": {"type": "object", "properties": {"query": {"type": "string", "description": "Question by user"}}, "required": ["query"]}}},
133
  ]
134
 
135
+ message_text = message["text"]
136
  func_caller.append({"role": "user", "content": f'[SYSTEM]You are a helpful assistant. You have access to the following functions: \n {str(functions_metadata)}\n\nTo use these functions respond with:\n<functioncall> {{ "name": "function_name", "arguments": {{ "arg_1": "value_1", "arg_1": "value_1", ... }} }} </functioncall> [USER] {message} {vqa}'})
137
 
138
  response = client_gemma.chat_completion(func_caller, max_tokens=150)
 
174
  query = query.replace(" ", "%20")
175
  image = f"![](https://image.pollinations.ai/prompt/{query}?seed={seed})"
176
  yield image
177
+ time.sleep(5)
178
  gr.Info("We are going to Update Our Image Generation Engine to more powerful ones in Next Update. ThankYou")
179
  elif json_data["name"] == "image_qna":
180
  messages = f"<|start_header_id|>system\nYou are OpenGPT 4o mini a helpful assistant made by KingNish. You are provide with both images and captions and Your task is to answer of user with help of caption provided. Answer in human style and show emotions.<|end_header_id|>"