KingNish commited on
Commit
7e5261e
·
verified ·
1 Parent(s): d660ce6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +69 -10
app.py CHANGED
@@ -1,18 +1,78 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
  import json
4
- import re
5
  import uuid
6
  from PIL import Image
7
  from bs4 import BeautifulSoup
8
  import requests
9
  import random
10
- from gradio_client import Client, file
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
- # Define functions for image captioning, web search, and text extraction
13
- def generate_caption_instructblip(image_path, question):
14
- client = Client("hysts/image-captioning-with-blip")
15
- return client.predict(file(image_path), f"{question}", api_name="/caption")
16
 
17
  def extract_text_from_webpage(html_content):
18
  soup = BeautifulSoup(html_content, 'html.parser')
@@ -62,10 +122,9 @@ def respond(message, history):
62
 
63
  # Handle image processing
64
  if message["files"]:
65
- for image in message["files"]:
66
- vqa += "[CAPTION of IMAGE] "
67
- gr.Info("Analyzing image")
68
- vqa += generate_caption_instructblip(image, message["text"])
69
 
70
  # Define function metadata for user interface
71
  functions_metadata = [
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
  import json
 
4
  import uuid
5
  from PIL import Image
6
  from bs4 import BeautifulSoup
7
  import requests
8
  import random
9
+ from transformers import LlavaProcessor, LlavaForConditionalGeneration, TextIteratorStreamer
10
+ from threading import Thread
11
+ import re
12
+ import time
13
+ import torch
14
+ import cv2
15
+
16
+ model_id = "llava-hf/llava-interleave-qwen-0.5b-hf"
17
+
18
+ processor = LlavaProcessor.from_pretrained(model_id)
19
+
20
+ model = LlavaForConditionalGeneration.from_pretrained(model_id, low_cpu_mem_usage=True)
21
+ model.to("cpu")
22
+
23
+
24
+ def sample_frames(video_file) :
25
+ try:
26
+ video = cv2.VideoCapture(video_file)
27
+ total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
28
+ num_frames = 12
29
+ interval = total_frames // num_frames
30
+ frames = []
31
+ for i in range(total_frames):
32
+ ret, frame = video.read()
33
+ pil_img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
34
+ if not ret:
35
+ continue
36
+ if i % interval == 0:
37
+ frames.append(pil_img)
38
+ video.release()
39
+ return frames
40
+ except:
41
+ frames=[]
42
+ return frames
43
+
44
+ def llava(user_prompt, history):
45
+ image = user_prompt["files"][-1]
46
+ txt = user_prompt["text"]
47
+ img = user_prompt["files"]
48
+
49
+ video_extensions = ("avi", "mp4", "mov", "mkv", "flv", "wmv", "mjpeg", "wav", "gif", "webm", "m4v", "3gp")
50
+ image_extensions = Image.registered_extensions()
51
+ image_extensions = tuple([ex for ex, f in image_extensions.items()])
52
+
53
+ if image.endswith(video_extensions):
54
+ image = sample_frames(image)
55
+ image_tokens = "<image>" * int(len(image))
56
+ prompt = f"<|im_start|>user {image_tokens}\n{user_prompt}<|im_end|><|im_start|>assistant"
57
+
58
+ elif image.endswith(image_extensions):
59
+ image = Image.open(image).convert("RGB")
60
+ prompt = f"<|im_start|>user <image>\n{user_prompt}<|im_end|><|im_start|>assistant"
61
+
62
+ print(len(image))
63
+
64
+ inputs = processor(prompt, image, return_tensors="pt")
65
+ streamer = TextIteratorStreamer(processor, skip_prompt=True, **{"skip_special_tokens": True})
66
+ generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
67
+ generated_text = ""
68
+
69
+ thread = Thread(target=model.generate, kwargs=generation_kwargs)
70
+ thread.start()
71
 
72
+ buffer = ""
73
+ for new_text in streamer:
74
+ buffer += new_text
75
+ yield buffer
76
 
77
  def extract_text_from_webpage(html_content):
78
  soup = BeautifulSoup(html_content, 'html.parser')
 
122
 
123
  # Handle image processing
124
  if message["files"]:
125
+ llava(message, history)
126
+ break
127
+
 
128
 
129
  # Define function metadata for user interface
130
  functions_metadata = [