Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -9,39 +9,30 @@ import requests
|
|
9 |
import random
|
10 |
from gradio_client import Client, file
|
11 |
|
|
|
12 |
def generate_caption_instructblip(image_path, question):
|
13 |
client = Client("hysts/image-captioning-with-blip")
|
14 |
return client.predict(file(image_path), f"{question}", api_name="/caption")
|
15 |
|
16 |
def extract_text_from_webpage(html_content):
|
17 |
-
"""Extracts visible text from HTML content using BeautifulSoup."""
|
18 |
soup = BeautifulSoup(html_content, 'html.parser')
|
19 |
-
# Remove unwanted tags
|
20 |
for tag in soup(["script", "style", "header", "footer"]):
|
21 |
tag.extract()
|
22 |
return soup.get_text(strip=True)
|
23 |
|
24 |
-
# Perform a Google search and return the results
|
25 |
def search(query):
|
26 |
-
|
27 |
-
term=query
|
28 |
print(f"Running web search for query: {term}")
|
29 |
start = 0
|
30 |
all_results = []
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
with requests.Session() as session:
|
35 |
-
resp = session.get(
|
36 |
url="https://www.google.com/search",
|
37 |
-
headers={"User-Agent": "Mozilla/5.0
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
"udm": 14,
|
42 |
-
},
|
43 |
-
timeout=5,
|
44 |
-
verify=None,
|
45 |
)
|
46 |
resp.raise_for_status()
|
47 |
soup = BeautifulSoup(resp.text, "html.parser")
|
@@ -50,10 +41,9 @@ def search(query):
|
|
50 |
link = result.find("a", href=True)
|
51 |
link = link["href"]
|
52 |
try:
|
53 |
-
webpage = session.get(link, headers={"User-Agent": "Mozilla/5.0
|
54 |
webpage.raise_for_status()
|
55 |
visible_text = extract_text_from_webpage(webpage.text)
|
56 |
-
# Truncate text if it's too long
|
57 |
if len(visible_text) > max_chars_per_page:
|
58 |
visible_text = visible_text[:max_chars_per_page]
|
59 |
all_results.append({"link": link, "text": visible_text})
|
@@ -61,114 +51,43 @@ def search(query):
|
|
61 |
all_results.append({"link": link, "text": None})
|
62 |
return all_results
|
63 |
|
64 |
-
|
65 |
client = InferenceClient("google/gemma-1.1-7b-it")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
-
|
68 |
-
message, history
|
69 |
-
):
|
70 |
-
messages = []
|
71 |
-
vqa=""
|
72 |
if message["files"]:
|
73 |
try:
|
74 |
-
for image in message["files"]:
|
75 |
vqa += "[CAPTION of IMAGE] "
|
76 |
gr.Info("Analyzing image")
|
77 |
vqa += generate_caption_instructblip(image, message["text"])
|
78 |
print(vqa)
|
79 |
except:
|
80 |
vqa = ""
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
functions_metadata = [
|
85 |
-
{
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
"description": "Search query on google and find latest information.",
|
90 |
-
"parameters": {
|
91 |
-
"type": "object",
|
92 |
-
"properties": {
|
93 |
-
"query": {
|
94 |
-
"type": "string",
|
95 |
-
"description": "web search query",
|
96 |
-
}
|
97 |
-
},
|
98 |
-
"required": ["query"],
|
99 |
-
},
|
100 |
-
},
|
101 |
-
},
|
102 |
-
{
|
103 |
-
"type": "function",
|
104 |
-
"function": {
|
105 |
-
"name": "general_query",
|
106 |
-
"description": "Reply general query of USER through LLM like you, it does'nt know latest information. But very helpful in general query. Its very powerful LLM. It knows many thing just like you except latest things, or thing that you don't know.",
|
107 |
-
"parameters": {
|
108 |
-
"type": "object",
|
109 |
-
"properties": {
|
110 |
-
"prompt": {
|
111 |
-
"type": "string",
|
112 |
-
"description": "A detailed prompt so that an LLm can understand better, what user wants.",
|
113 |
-
}
|
114 |
-
},
|
115 |
-
"required": ["prompt"],
|
116 |
-
},
|
117 |
-
},
|
118 |
-
},
|
119 |
-
{
|
120 |
-
"type": "function",
|
121 |
-
"function": {
|
122 |
-
"name": "image_generation",
|
123 |
-
"description": "Generate image for user.",
|
124 |
-
"parameters": {
|
125 |
-
"type": "object",
|
126 |
-
"properties": {
|
127 |
-
"query": {
|
128 |
-
"type": "string",
|
129 |
-
"description": "image generation prompt in detail.",
|
130 |
-
},
|
131 |
-
"number_of_image": {
|
132 |
-
"type": "integer",
|
133 |
-
"description": "number of images to generate.",
|
134 |
-
}
|
135 |
-
},
|
136 |
-
"required": ["query"],
|
137 |
-
},
|
138 |
-
},
|
139 |
-
},
|
140 |
-
{
|
141 |
-
"type": "function",
|
142 |
-
"function": {
|
143 |
-
"name": "image_qna",
|
144 |
-
"description": "Answer question asked by user related to image.",
|
145 |
-
"parameters": {
|
146 |
-
"type": "object",
|
147 |
-
"properties": {
|
148 |
-
"query": {
|
149 |
-
"type": "string",
|
150 |
-
"description": "Question by user",
|
151 |
-
}
|
152 |
-
},
|
153 |
-
"required": ["query"],
|
154 |
-
},
|
155 |
-
},
|
156 |
-
}
|
157 |
]
|
158 |
|
159 |
message_text = message["text"]
|
160 |
-
|
161 |
|
162 |
-
|
163 |
-
|
164 |
-
generate_kwargs = dict( max_new_tokens=2000, do_sample=True, stream=True, details=True, return_full_text=False )
|
165 |
|
166 |
-
for
|
167 |
-
|
168 |
-
|
169 |
-
messages.append({"role": "user", "content": f'[SYSTEM]You are a helpful assistant with access to the following functions: \n {str(functions_metadata)}\n\nTo use these functions respond with:\n<functioncall> {{ "name": "function_name", "arguments": {{ "arg_1": "value_1", "arg_1": "value_1", ... }} }} </functioncall> [USER] {message} {vqa}'})
|
170 |
-
|
171 |
-
response = client.chat_completion( messages, max_tokens=150)
|
172 |
response = str(response)
|
173 |
try:
|
174 |
response = response[int(response.find("{")):int(response.index("</"))]
|
@@ -178,7 +97,8 @@ def respond(
|
|
178 |
response = response.replace("\\'", "'")
|
179 |
response = response.replace('\\"', '"')
|
180 |
print(f"\n{response}")
|
181 |
-
|
|
|
182 |
try:
|
183 |
json_data = json.loads(str(response))
|
184 |
if json_data["name"] == "web_search":
|
@@ -192,7 +112,7 @@ def respond(
|
|
192 |
messages += f"\n<|im_start|>user\n{str(msg[0])}<|im_end|>"
|
193 |
messages += f"\n<|im_start|>assistant\n{str(msg[1])}<|im_end|>"
|
194 |
messages+=f"\n<|im_start|>user\n{message_text} {vqa}<|im_end|>\n<|im_start|>web_result\n{web2}<|im_end|>\n<|im_start|>assistant\n"
|
195 |
-
stream = client_mixtral.text_generation(messages,
|
196 |
output = ""
|
197 |
for response in stream:
|
198 |
if not response.token.text == "<|im_end|>":
|
@@ -212,7 +132,7 @@ def respond(
|
|
212 |
messages += f"\n<|start_header_id|>user\n{str(msg[0])}<|end_header_id|>"
|
213 |
messages += f"\n<|start_header_id|>assistant\n{str(msg[1])}<|end_header_id|>"
|
214 |
messages+=f"\n<|start_header_id|>user\n{message_text} {vqa}<|end_header_id|>\n<|start_header_id|>assistant\n"
|
215 |
-
stream = client_llama.text_generation(messages,
|
216 |
output = ""
|
217 |
for response in stream:
|
218 |
if not response.token.text == "<|eot_id|>":
|
@@ -224,7 +144,7 @@ def respond(
|
|
224 |
messages += f"\n<|start_header_id|>user\n{str(msg[0])}<|end_header_id|>"
|
225 |
messages += f"\n<|start_header_id|>assistant\n{str(msg[1])}<|end_header_id|>"
|
226 |
messages+=f"\n<|start_header_id|>user\n{message_text} {vqa}<|end_header_id|>\n<|start_header_id|>assistant\n"
|
227 |
-
stream = client_llama.text_generation(messages,
|
228 |
output = ""
|
229 |
for response in stream:
|
230 |
if not response.token.text == "<|eot_id|>":
|
@@ -236,24 +156,28 @@ def respond(
|
|
236 |
messages += f"\n<|start_header_id|>user\n{str(msg[0])}<|end_header_id|>"
|
237 |
messages += f"\n<|start_header_id|>assistant\n{str(msg[1])}<|end_header_id|>"
|
238 |
messages+=f"\n<|start_header_id|>user\n{message_text} {vqa}<|end_header_id|>\n<|start_header_id|>assistant\n"
|
239 |
-
stream = client_llama.text_generation(messages,
|
240 |
output = ""
|
241 |
for response in stream:
|
242 |
if not response.token.text == "<|eot_id|>":
|
243 |
output += response.token.text
|
244 |
yield output
|
245 |
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
|
|
|
|
|
|
|
|
259 |
demo.launch()
|
|
|
9 |
import random
|
10 |
from gradio_client import Client, file
|
11 |
|
12 |
+
# Define functions for image captioning, web search, and text extraction
|
13 |
def generate_caption_instructblip(image_path, question):
|
14 |
client = Client("hysts/image-captioning-with-blip")
|
15 |
return client.predict(file(image_path), f"{question}", api_name="/caption")
|
16 |
|
17 |
def extract_text_from_webpage(html_content):
|
|
|
18 |
soup = BeautifulSoup(html_content, 'html.parser')
|
|
|
19 |
for tag in soup(["script", "style", "header", "footer"]):
|
20 |
tag.extract()
|
21 |
return soup.get_text(strip=True)
|
22 |
|
|
|
23 |
def search(query):
|
24 |
+
term = query
|
|
|
25 |
print(f"Running web search for query: {term}")
|
26 |
start = 0
|
27 |
all_results = []
|
28 |
+
max_chars_per_page = 8000
|
29 |
+
with requests.Session() as session:
|
30 |
+
resp = session.get(
|
|
|
|
|
31 |
url="https://www.google.com/search",
|
32 |
+
headers={"User-Agent": "Mozilla/5.0"},
|
33 |
+
params={"q": term, "num": 3, "udm": 14},
|
34 |
+
timeout=5,
|
35 |
+
verify=None,
|
|
|
|
|
|
|
|
|
36 |
)
|
37 |
resp.raise_for_status()
|
38 |
soup = BeautifulSoup(resp.text, "html.parser")
|
|
|
41 |
link = result.find("a", href=True)
|
42 |
link = link["href"]
|
43 |
try:
|
44 |
+
webpage = session.get(link, headers={"User-Agent": "Mozilla/5.0"}, timeout=5, verify=False)
|
45 |
webpage.raise_for_status()
|
46 |
visible_text = extract_text_from_webpage(webpage.text)
|
|
|
47 |
if len(visible_text) > max_chars_per_page:
|
48 |
visible_text = visible_text[:max_chars_per_page]
|
49 |
all_results.append({"link": link, "text": visible_text})
|
|
|
51 |
all_results.append({"link": link, "text": None})
|
52 |
return all_results
|
53 |
|
54 |
+
# Initialize inference clients for different models
|
55 |
client = InferenceClient("google/gemma-1.1-7b-it")
|
56 |
+
client_mixtral = InferenceClient("NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO")
|
57 |
+
client_llama = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
|
58 |
+
|
59 |
+
# Define the main chat function
|
60 |
+
def respond(message, history):
|
61 |
+
global messages # Make messages global for persistent storage
|
62 |
+
messages = [] # Initialize messages list (this gets overwritten each turn)
|
63 |
+
vqa = ""
|
64 |
|
65 |
+
# Handle image processing
|
|
|
|
|
|
|
|
|
66 |
if message["files"]:
|
67 |
try:
|
68 |
+
for image in message["files"]:
|
69 |
vqa += "[CAPTION of IMAGE] "
|
70 |
gr.Info("Analyzing image")
|
71 |
vqa += generate_caption_instructblip(image, message["text"])
|
72 |
print(vqa)
|
73 |
except:
|
74 |
vqa = ""
|
75 |
+
|
76 |
+
# Define function metadata for user interface
|
|
|
77 |
functions_metadata = [
|
78 |
+
{"type": "function", "function": {"name": "web_search", "description": "Search query on google", "parameters": {"type": "object", "properties": {"query": {"type": "string", "description": "web search query"}}, "required": ["query"]}}},
|
79 |
+
{"type": "function", "function": {"name": "general_query", "description": "Reply general query of USER", "parameters": {"type": "object", "properties": {"prompt": {"type": "string", "description": "A detailed prompt"}}, "required": ["prompt"]}}},
|
80 |
+
{"type": "function", "function": {"name": "image_generation", "description": "Generate image for user", "parameters": {"type": "object", "properties": {"query": {"type": "string", "description": "image generation prompt"}, "number_of_image": {"type": "integer", "description": "number of images to generate"}}, "required": ["query"]}}},
|
81 |
+
{"type": "function", "function": {"name": "image_qna", "description": "Answer question asked by user related to image", "parameters": {"type": "object", "properties": {"query": {"type": "string", "description": "Question by user"}}, "required": ["query"]}}},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
]
|
83 |
|
84 |
message_text = message["text"]
|
|
|
85 |
|
86 |
+
# Append user messages and system instructions to the messages list
|
87 |
+
messages.append({"role": "user", "content": f'[SYSTEM]You are a helpful assistant. You have access to the following functions: \n {str(functions_metadata)}\n\nTo use these functions respond with:\n<functioncall> {{ "name": "function_name", "arguments": {{ "arg_1": "value_1", "arg_1": "value_1", ... }} }} </functioncall> [USER] {message} {vqa}'})
|
|
|
88 |
|
89 |
+
# Call the LLM for response generation
|
90 |
+
response = client.chat_completion(messages, max_tokens=150)
|
|
|
|
|
|
|
|
|
91 |
response = str(response)
|
92 |
try:
|
93 |
response = response[int(response.find("{")):int(response.index("</"))]
|
|
|
97 |
response = response.replace("\\'", "'")
|
98 |
response = response.replace('\\"', '"')
|
99 |
print(f"\n{response}")
|
100 |
+
|
101 |
+
# Process and return the response based on the function call
|
102 |
try:
|
103 |
json_data = json.loads(str(response))
|
104 |
if json_data["name"] == "web_search":
|
|
|
112 |
messages += f"\n<|im_start|>user\n{str(msg[0])}<|im_end|>"
|
113 |
messages += f"\n<|im_start|>assistant\n{str(msg[1])}<|im_end|>"
|
114 |
messages+=f"\n<|im_start|>user\n{message_text} {vqa}<|im_end|>\n<|im_start|>web_result\n{web2}<|im_end|>\n<|im_start|>assistant\n"
|
115 |
+
stream = client_mixtral.text_generation(messages, max_new_tokens=2000, do_sample=True, stream=True, details=True, return_full_text=False)
|
116 |
output = ""
|
117 |
for response in stream:
|
118 |
if not response.token.text == "<|im_end|>":
|
|
|
132 |
messages += f"\n<|start_header_id|>user\n{str(msg[0])}<|end_header_id|>"
|
133 |
messages += f"\n<|start_header_id|>assistant\n{str(msg[1])}<|end_header_id|>"
|
134 |
messages+=f"\n<|start_header_id|>user\n{message_text} {vqa}<|end_header_id|>\n<|start_header_id|>assistant\n"
|
135 |
+
stream = client_llama.text_generation(messages, max_new_tokens=2000, do_sample=True, stream=True, details=True, return_full_text=False)
|
136 |
output = ""
|
137 |
for response in stream:
|
138 |
if not response.token.text == "<|eot_id|>":
|
|
|
144 |
messages += f"\n<|start_header_id|>user\n{str(msg[0])}<|end_header_id|>"
|
145 |
messages += f"\n<|start_header_id|>assistant\n{str(msg[1])}<|end_header_id|>"
|
146 |
messages+=f"\n<|start_header_id|>user\n{message_text} {vqa}<|end_header_id|>\n<|start_header_id|>assistant\n"
|
147 |
+
stream = client_llama.text_generation(messages, max_new_tokens=2000, do_sample=True, stream=True, details=True, return_full_text=False)
|
148 |
output = ""
|
149 |
for response in stream:
|
150 |
if not response.token.text == "<|eot_id|>":
|
|
|
156 |
messages += f"\n<|start_header_id|>user\n{str(msg[0])}<|end_header_id|>"
|
157 |
messages += f"\n<|start_header_id|>assistant\n{str(msg[1])}<|end_header_id|>"
|
158 |
messages+=f"\n<|start_header_id|>user\n{message_text} {vqa}<|end_header_id|>\n<|start_header_id|>assistant\n"
|
159 |
+
stream = client_llama.text_generation(messages, max_new_tokens=2000, do_sample=True, stream=True, details=True, return_full_text=False)
|
160 |
output = ""
|
161 |
for response in stream:
|
162 |
if not response.token.text == "<|eot_id|>":
|
163 |
output += response.token.text
|
164 |
yield output
|
165 |
|
166 |
+
# Create the Gradio interface
|
167 |
+
demo = gr.ChatInterface(
|
168 |
+
fn=respond,
|
169 |
+
chatbot=gr.Chatbot(show_copy_button=True, likeable=True, layout="panel"),
|
170 |
+
title="OpenGPT 4o mini",
|
171 |
+
textbox=gr.MultimodalTextbox(),
|
172 |
+
multimodal=True,
|
173 |
+
concurrency_limit=20,
|
174 |
+
examples=[
|
175 |
+
{"text": "Hy, who are you?",},
|
176 |
+
{"text": "What's the current price of Bitcoin",},
|
177 |
+
{"text": "Create A Beautiful image of Effiel Tower at Night",},
|
178 |
+
{"text": "Write me a Python function to calculate the first 10 digits of the fibonacci sequence.",},
|
179 |
+
{"text": "What's the colour of both of Car in given image", "files": ["./car1.png", "./car2.png"]},
|
180 |
+
],
|
181 |
+
cache_examples=False,
|
182 |
+
)
|
183 |
demo.launch()
|