Spaces:
Running
on
Zero
Running
on
Zero
File size: 2,408 Bytes
52811e4 c9ca579 52811e4 383cfb9 52811e4 dc8adce c9ca579 52811e4 336ed2f 52811e4 9a6e691 52811e4 336ed2f 383cfb9 c9ca579 68bde08 c9ca579 68bde08 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
import re
import gradio as gr
from huggingface_hub import InferenceClient
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
system_instructions = "[SYSTEM] You are the Best AI, you can solve complex problems you answer in short , simple and easy language.[USER]"
def text(prompt):
generate_kwargs = dict(
temperature=0.5,
max_new_tokens=5,
top_p=0.7,
repetition_penalty=1.2,
do_sample=True,
seed=42,
)
formatted_prompt = system_instructions + prompt + "[BOT]"
stream = client.text_generation(
formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
if not response.token.text == "</s>":
output += response.token.text
return output
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
system_instructions = "[SYSTEM] You will be provided with text, and your task is to classify task tasks are (text generation, image generation, tts) answer with only task type that prompt user give, do not say anything else and stop as soon as possible. Example: User- What is friction , BOT - text generation [USER]"
def classify_task(prompt):
generate_kwargs = dict(
temperature=0.5,
max_new_tokens=5,
top_p=0.7,
repetition_penalty=1.2,
do_sample=True,
seed=42,
)
formatted_prompt = system_instructions + prompt + "[BOT]"
stream = client.text_generation(
formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
if not response.token.text == "</s>":
output += response.token.text
yield output
if 'text' in output.lower():
user = text(prompt)
elif 'image' in output.lower():
return 'Image Generation'
else:
return 'Unknown Task'
# Create the Gradio interface
with gr.Blocks() as demo:
with gr.Row():
text_uesr_input = gr.Textbox(label="Enter text 📚")
output = gr.Textbox(label="Translation")
with gr.Row():
translate_btn = gr.Button("Translate 🚀")
translate_btn.click(fn=classify_task, inputs=text_uesr_input,
outputs=output, api_name="translate_text")
# Launch the app
if __name__ == "__main__":
demo.launch()
|