KingNish commited on
Commit
c533de0
·
verified ·
1 Parent(s): 8c443aa

Update voice_chat.py

Browse files
Files changed (1) hide show
  1. voice_chat.py +78 -7
voice_chat.py CHANGED
@@ -9,6 +9,69 @@ import torch
9
  import sentencepiece as spm
10
  import onnxruntime as ort
11
  from huggingface_hub import hf_hub_download, InferenceClient
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
 
13
  # Speech Recognition Model Configuration
14
  model_name = "neongeckocom/stt_en_citrinet_512_gamma_0_25"
@@ -21,7 +84,7 @@ tokenizer = spm.SentencePieceProcessor(hf_hub_download(model_name, "tokenizer.sp
21
 
22
  # Mistral Model Configuration
23
  client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
24
- system_instructions1 = "[SYSTEM] Answer as Real OpenGPT 4o, Made by 'KingNish', Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. You will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]"
25
 
26
  def resample(audio_fp32, sr):
27
  return soxr.resample(audio_fp32, sr, sample_rate)
@@ -49,14 +112,22 @@ def transcribe(audio_path):
49
 
50
  return text
51
 
52
- def model(text):
53
- formatted_prompt = system_instructions1 + text + "[OpenGPT 4o]"
54
- stream = client1.text_generation(formatted_prompt, max_new_tokens=512, stream=True, details=True, return_full_text=False)
55
- return "".join([response.token.text for response in stream if response.token.text != "</s>"])
 
 
 
 
 
 
 
 
56
 
57
- async def respond(audio):
58
  user = transcribe(audio)
59
- reply = model(user)
60
  communicate = edge_tts.Communicate(reply)
61
  with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
62
  tmp_path = tmp_file.name
 
9
  import sentencepiece as spm
10
  import onnxruntime as ort
11
  from huggingface_hub import hf_hub_download, InferenceClient
12
+ import requests
13
+ from bs4 import BeautifulSoup
14
+ import urllib
15
+
16
+ def extract_text_from_webpage(html_content):
17
+ """Extracts visible text from HTML content using BeautifulSoup."""
18
+ soup = BeautifulSoup(html_content, "html.parser")
19
+ # Remove unwanted tags
20
+ for tag in soup(["script", "style", "header", "footer", "nav"]):
21
+ tag.extract()
22
+ # Get the remaining visible text
23
+ visible_text = soup.get_text(strip=True)
24
+ return visible_text
25
+
26
+ # Perform a Google search and return the results
27
+ def search(term, num_results=3, lang="en", advanced=True, timeout=5, safe="active", ssl_verify=None):
28
+ """Performs a Google search and returns the results."""
29
+ escaped_term = urllib.parse.quote_plus(term)
30
+ start = 0
31
+ all_results = []
32
+ # Limit the number of characters from each webpage to stay under the token limit
33
+ max_chars_per_page = 3000 # Adjust this value based on your token limit and average webpage length
34
+
35
+ with requests.Session() as session:
36
+ while start < num_results:
37
+ resp = session.get(
38
+ url="https://www.google.com/search",
39
+ headers={"User-Agent":'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36 Edg/111.0.1661.62'},
40
+ params={
41
+ "q": term,
42
+ "num": num_results - start,
43
+ "hl": lang,
44
+ "start": start,
45
+ "safe": safe,
46
+ },
47
+ timeout=timeout,
48
+ verify=ssl_verify,
49
+ )
50
+ resp.raise_for_status()
51
+ soup = BeautifulSoup(resp.text, "html.parser")
52
+ result_block = soup.find_all("div", attrs={"class": "g"})
53
+ if not result_block:
54
+ start += 1
55
+ continue
56
+ for result in result_block:
57
+ link = result.find("a", href=True)
58
+ if link:
59
+ link = link["href"]
60
+ try:
61
+ webpage = session.get(link, headers={"User-Agent": get_useragent()})
62
+ webpage.raise_for_status()
63
+ visible_text = extract_text_from_webpage(webpage.text)
64
+ # Truncate text if it's too long
65
+ if len(visible_text) > max_chars_per_page:
66
+ visible_text = visible_text[:max_chars_per_page] + "..."
67
+ all_results.append({"text": visible_text})
68
+ except requests.exceptions.RequestException as e:
69
+ print(f"Error fetching or processing {link}: {e}")
70
+ all_results.append({"text": None})
71
+ else:
72
+ all_results.append({"text": None})
73
+ start += len(result_block)
74
+ return all_results
75
 
76
  # Speech Recognition Model Configuration
77
  model_name = "neongeckocom/stt_en_citrinet_512_gamma_0_25"
 
84
 
85
  # Mistral Model Configuration
86
  client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
87
+ system_instructions1 = "<s>[SYSTEM] Answer as Real OpenGPT 4o, Made by 'KingNish', Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. The request asks you to provide friendly responses. The expectation is that I will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]"
88
 
89
  def resample(audio_fp32, sr):
90
  return soxr.resample(audio_fp32, sr, sample_rate)
 
112
 
113
  return text
114
 
115
+ def model(text, web_search):
116
+ if web_search is True:
117
+ """Performs a web search, feeds the results to a language model, and returns the answer."""
118
+ web_results = search(text)
119
+ web2 = ' '.join([f"Text: {res['text']}\n\n" for res in web_results])
120
+ formatted_prompt = system_instructions1 + text + "[WEB]" + str(web2) + "[OpenGPT 4o]"
121
+ stream = client1.text_generation(formatted_prompt, max_new_tokens=512, stream=True, details=True, return_full_text=False)
122
+ return "".join([response.token.text for response in stream if response.token.text != "</s>"])
123
+ else:
124
+ formatted_prompt = system_instructions1 + text + "[OpenGPT 4o]"
125
+ stream = client1.text_generation(formatted_prompt, max_new_tokens=512, stream=True, details=True, return_full_text=False)
126
+ return "".join([response.token.text for response in stream if response.token.text != "</s>"])
127
 
128
+ async def respond(audio, web_search):
129
  user = transcribe(audio)
130
+ reply = model(user, web_search)
131
  communicate = edge_tts.Communicate(reply)
132
  with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
133
  tmp_path = tmp_file.name