Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import spaces | |
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor | |
from qwen_vl_utils import process_vision_info | |
import torch | |
from PIL import Image | |
import subprocess | |
from datetime import datetime | |
import numpy as np | |
import os | |
# Install flash-attn | |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
# Model and Processor Loading (Done once at startup) | |
MODEL_ID = "Qwen/Qwen2-VL-7B-Instruct" | |
model = Qwen2VLForConditionalGeneration.from_pretrained(MODEL_ID, trust_remote_code=True, torch_dtype=torch.float16).to("cuda").eval() | |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True) | |
DESCRIPTION = "[Qwen2-VL-7B Demo](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct)" | |
def qwen_inference(media_path, text_input=None): | |
image_extensions = Image.registered_extensions() | |
if media_path.endswith(tuple([i for i, f in image_extensions.items()])): | |
media_type = "image" | |
elif media_path.endswith(("avi", "mp4", "mov", "mkv", "flv", "wmv", "mjpeg", "wav", "gif", "webm", "m4v", "3gp")): # Check if it's a video path | |
media_type = "video" | |
else: | |
raise ValueError("Unsupported media type. Please upload an image or video.") | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{ | |
"type": media_type, | |
media_type: media_path, | |
**({"fps": 8.0} if media_type == "video" else {}), | |
}, | |
{"type": "text", "text": text_input}, | |
], | |
} | |
] | |
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
image_inputs, video_inputs = process_vision_info(messages) | |
inputs = processor( | |
text=[text], | |
images=image_inputs, | |
videos=video_inputs, | |
padding=True, | |
return_tensors="pt", | |
).to("cuda") | |
generated_ids = model.generate(**inputs, max_new_tokens=1024) | |
generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)] | |
output_text = processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | |
return output_text | |
css = """ | |
#output { | |
height: 500px; | |
overflow: auto; | |
border: 1px solid #ccc; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown(DESCRIPTION) | |
with gr.Tab(label="Image/Video Input"): | |
with gr.Row(): | |
with gr.Column(): | |
input_media = gr.File(label="Upload Image or Video", type="filepath") | |
text_input = gr.Textbox(label="Question") | |
submit_btn = gr.Button(value="Submit") | |
with gr.Column(): | |
output_text = gr.Textbox(label="Output Text") | |
submit_btn.click(qwen_inference, [input_media, text_input], [output_text]) | |
demo.launch(debug=True) |