File size: 4,741 Bytes
e984a2c
 
 
 
ae04b43
e984a2c
b9a20a2
e984a2c
36e241a
e984a2c
36e241a
0b3f980
36e241a
0b3f980
e984a2c
3ce81f3
15868bd
e984a2c
4c0ea3b
c322453
 
 
 
 
 
 
 
 
 
3ce81f3
f710012
 
3ce81f3
 
 
 
 
 
 
 
f710012
3ce81f3
 
 
 
 
 
a5684eb
 
3ce81f3
 
039e573
 
 
 
 
 
 
 
 
4c99be6
 
 
 
 
3ce81f3
 
 
 
 
 
 
 
 
 
 
 
73b860d
3ce81f3
 
 
 
 
039e573
 
3ce81f3
039e573
3ce81f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c3b706
3ce81f3
039e573
 
3ce81f3
 
 
 
4c3b706
3ce81f3
039e573
 
3ce81f3
 
 
 
 
 
4c3b706
 
3ce81f3
 
 
 
 
 
 
0eb6346
3ce81f3
0eb6346
3ce81f3
 
 
 
b843042
c322453
 
 
3ce81f3
 
 
 
 
 
 
 
4c0ea3b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import gradio as gr
import numpy as np
import random
from diffusers import DiffusionPipeline
from diffusers import StableDiffusionXLPipeline, DPMSolverSinglestepScheduler
import torch
import spaces

device = "cuda"

torch.cuda.max_memory_allocated(device=device)
pipe = StableDiffusionXLPipeline.from_pretrained("sd-community/sdxl-flash")
pipe = pipe.to(device)
pipe.scheduler = DPMSolverSinglestepScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 4096

@spaces.GPU(duration=120, queue=False)
def infer(
        prompt: str,
        negative_prompt: str = "",
        seed: int = 24,
        randomize_seed: bool = False,
        width: int = 1024,
        height: int = 1024,
        guidance_scale = 3,
        num_inference_steps: int = 9,
        progress=gr.Progress(track_tqdm=True)):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)        
    generator = torch.Generator().manual_seed(seed)    
    image = pipe(
        prompt = prompt, 
        negative_prompt = negative_prompt,
        guidance_scale = guidance_scale, 
        num_inference_steps = num_inference_steps, 
        width = width, 
        height = height,
        generator = generator
    ).images[0]     
    return image

examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
    "An alien grasping a sign board contain word 'Flash'",
    "Kids going to school, Anime style"
]

css = '''
.gradio-container{max-width: 560px !important}
h1{text-align:center}
footer {
    visibility: hidden
}
'''

with gr.Blocks(title="SDXL Flash", css=css) as demo:
    with gr.Column():
        gr.Markdown("""# SDXL Flash
        ### Super fast text to Image Generator.
        ### <span style='color: red;'>You may change the steps from 5 to 8 or 10, if you didn't get satisfied results.
        ### First Image processing takes time then images generate faster.""")    
        with gr.Row():
            
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            
            run_button = gr.Button("Run", scale=0)
        
        result = gr.Image(label="Result")

        with gr.Accordion("Advanced Settings", open=False):
            
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=5,
                lines=4,
                placeholder="Enter a negative prompt",
                value = "(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, NSFW",
            )
            
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=8,
                    value=1024,
                )
                
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=8,
                    value=1024,
                )
            
            with gr.Row():
                
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=1.0,
                    maximum=6.0,
                    step=0.1,
                    value=3.0,
                )
                
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=15,
                    step=1,
                    value=5,
                )
        
        gr.Examples(
            examples = examples,
            inputs = prompt,
            outputs = result,
            fn=infer,
            cache_examples=True
        )

    run_button.click(
        fn = infer,
        inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
        outputs = [result]
    )

demo.queue(max_size=20).launch()