Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import numpy as np | |
import random | |
from diffusers import DiffusionPipeline | |
from diffusers import StableDiffusionXLPipeline, DPMSolverSinglestepScheduler | |
import torch | |
import spaces | |
device = "cuda" | |
torch.cuda.max_memory_allocated(device=device) | |
pipe = StableDiffusionXLPipeline.from_pretrained("sd-community/sdxl-flash") | |
pipe = pipe.to(device) | |
pipe.scheduler = DPMSolverSinglestepScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing") | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
image = pipe( | |
prompt = prompt, | |
negative_prompt = negative_prompt, | |
guidance_scale = guidance_scale, | |
num_inference_steps = num_inference_steps, | |
width = width, | |
height = height, | |
generator = generator | |
).images[0] | |
return image | |
examples = [ | |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", | |
"An astronaut riding a green horse", | |
"A delicious ceviche cheesecake slice", | |
"An alien grasping a sign board contain word 'Flash', detailed", | |
] | |
with gr.Blocks() as demo: | |
with gr.Column(): | |
gr.Markdown("""# SDXL Flash | |
### Super fast text to Image Generator. | |
### <span style='color: red;'>You may change the steps from 5 to 8 or 10, if you didn't get satisfied results. | |
### First Image processing takes time then images generate faster.""") | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0) | |
result = gr.Image(label="Result") | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
value = "Ugly, malformed, noise, blur, watermark, distorted", | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=512, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=512, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.0, | |
maximum=10.0, | |
step=0.1, | |
value=3.0, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=12, | |
step=1, | |
value=5, | |
) | |
gr.Examples( | |
examples = examples, | |
inputs = [prompt] | |
) | |
run_button.click( | |
fn = infer, | |
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], | |
outputs = [result] | |
) | |
demo.queue().launch() |