SDXL-Flash / app.py
KingNish's picture
Update app.py
a8c9598 verified
raw
history blame
1.28 kB
import gradio as gr
import numpy as np
import random
from diffusers import DiffusionPipeline
from diffusers import StableDiffusionXLPipeline, DPMSolverSinglestepScheduler
import torch
pipe = StableDiffusionXLPipeline.from_pretrained("sd-community/sdxl-flash", torch_dtype=torch.float16, variant="fp16").to("cuda")
pipe.scheduler = DPMSolverSinglestepScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
@spaces.GPU(duration=50)
def generate_image(prompt, negative_prompt):
# Run the diffusion model to generate an image
output = pipe(prompt, negative_prompt, num_inference_steps=7, guidance_scale=3.5)
return output.images[0]
prompt = gr.Textbox(label = "Prompt", info = "Describe the subject, the background and the style of image", placeholder = "Describe what you want to see", lines = 2)
negative_prompt = gr.Textbox(label = "Negative prompt", placeholder = "Describe what you do NOT want to see", value = "Ugly, malformed, noise, blur, watermark")
gr_interface = gr.Interface(
fn=generate_image,
inputs=[prompt, negative_prompt],
outputs="image",
title="Real-time Image Generation with Diffusion",
description="Enter a prompt to generate an image",
theme="soft"
)
# Launch the Gradio app
gr_interface.launch()