Spaces:
Running
on
Zero
Running
on
Zero
Minor enhancements
Browse files* added CPU support
* DESCRIPTION variable now is included in text
app.py
CHANGED
@@ -1,8 +1,4 @@
|
|
1 |
-
import os
|
2 |
-
import random
|
3 |
-
import uuid
|
4 |
-
import json
|
5 |
-
|
6 |
import gradio as gr
|
7 |
import numpy as np
|
8 |
from PIL import Image
|
@@ -10,8 +6,9 @@ import spaces
|
|
10 |
import torch
|
11 |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
12 |
|
|
|
13 |
if not torch.cuda.is_available():
|
14 |
-
DESCRIPTION
|
15 |
|
16 |
MAX_SEED = np.iinfo(np.int32).max
|
17 |
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "1") == "1"
|
@@ -21,15 +18,18 @@ ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
|
21 |
|
22 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
if torch.cuda.is_available():
|
25 |
-
pipe = StableDiffusionXLPipeline.from_pretrained(
|
26 |
-
"sd-community/sdxl-flash",
|
27 |
-
torch_dtype=torch.float16,
|
28 |
-
use_safetensors=True,
|
29 |
-
add_watermarker=False
|
30 |
-
)
|
31 |
-
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
32 |
pipe.to("cuda")
|
|
|
|
|
33 |
|
34 |
def save_image(img):
|
35 |
unique_name = str(uuid.uuid4()) + ".png"
|
@@ -90,14 +90,15 @@ examples = [
|
|
90 |
|
91 |
css = '''
|
92 |
.gradio-container{max-width: 700px !important}
|
93 |
-
h1{text-align:
|
94 |
footer {
|
95 |
visibility: hidden
|
96 |
}
|
97 |
'''
|
98 |
with gr.Blocks(css=css) as demo:
|
99 |
-
gr.Markdown("""# SDXL Flash
|
100 |
-
### First Image processing takes time then images generate faster.
|
|
|
101 |
with gr.Group():
|
102 |
with gr.Row():
|
103 |
prompt = gr.Text(
|
|
|
1 |
+
import os, random, uuid, json
|
|
|
|
|
|
|
|
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
4 |
from PIL import Image
|
|
|
6 |
import torch
|
7 |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
8 |
|
9 |
+
DESCRIPTION = None
|
10 |
if not torch.cuda.is_available():
|
11 |
+
DESCRIPTION = "\nRunning on CPU 🥶 This demo may not work on CPU."
|
12 |
|
13 |
MAX_SEED = np.iinfo(np.int32).max
|
14 |
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "1") == "1"
|
|
|
18 |
|
19 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
20 |
|
21 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(
|
22 |
+
"sd-community/sdxl-flash",
|
23 |
+
torch_dtype=torch.float16,
|
24 |
+
use_safetensors=True,
|
25 |
+
add_watermarker=False
|
26 |
+
)
|
27 |
+
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
28 |
+
|
29 |
if torch.cuda.is_available():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
pipe.to("cuda")
|
31 |
+
else:
|
32 |
+
pipe.to("cpu")
|
33 |
|
34 |
def save_image(img):
|
35 |
unique_name = str(uuid.uuid4()) + ".png"
|
|
|
90 |
|
91 |
css = '''
|
92 |
.gradio-container{max-width: 700px !important}
|
93 |
+
h1{text-align:left}
|
94 |
footer {
|
95 |
visibility: hidden
|
96 |
}
|
97 |
'''
|
98 |
with gr.Blocks(css=css) as demo:
|
99 |
+
gr.Markdown(f"""# SDXL Flash
|
100 |
+
### First Image processing takes time then images generate faster.
|
101 |
+
{DESCRIPTION}""")
|
102 |
with gr.Group():
|
103 |
with gr.Row():
|
104 |
prompt = gr.Text(
|