import os import random import uuid import json import gradio as gr import numpy as np from PIL import Image import spaces import torch from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler if not torch.cuda.is_available(): DESCRIPTION += "\n

Running on CPU 🥶 This demo may not work on CPU.

" MAX_SEED = np.iinfo(np.int32).max CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "1") == "1" MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096")) USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1" ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1" device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") if torch.cuda.is_available(): pipe = StableDiffusionXLPipeline.from_pretrained( "sd-community/sdxl-flash", torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False ) pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.load_lora_weights("ehristoforu/dalle-3-xl-v2", weight_name="dalle-3-xl-lora-v2.safetensors", adapter_name="dalle") pipe.set_adapters("dalle") pipe.to("cuda") def save_image(img): unique_name = str(uuid.uuid4()) + ".png" img.save(unique_name) return unique_name def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed @spaces.GPU(duration=30, queue=False) def generate( prompt: str, negative_prompt: str = "", use_negative_prompt: bool = False, seed: int = 0, width: int = 1024, height: int = 1024, guidance_scale: float = 3, num_inference_steps: int = 10, randomize_seed: bool = False, use_resolution_binning: bool = True, progress=gr.Progress(track_tqdm=True), ): pipe.to(device) seed = int(randomize_seed_fn(seed, randomize_seed)) generator = torch.Generator().manual_seed(seed) options = { "prompt":prompt, "negative_prompt":negative_prompt, "width":width, "height":height, "guidance_scale":guidance_scale, "num_inference_steps":num_inference_steps, "generator":generator, "use_resolution_binning":use_resolution_binning, "output_type":"pil", } images = pipe(**options).images image_paths = [save_image(img) for img in images] return image_paths, seed examples = [ "a cat eating a piece of cheese", "a ROBOT riding a BLUE horse on Mars, photorealistic", "a cartoon of a IRONMAN fighting with HULK, wall painting", "a cute robot artist painting on an easel, concept art", "Astronaut in a jungle, cold color palette, oil pastel, detailed, 8k", "An alien grasping a sign board contain word 'Flash', sketch, detailed", "Kids going to school, Anime style" ] css = ''' .gradio-container{max-width: 560px !important} h1{text-align:center} footer { visibility: hidden } ''' with gr.Blocks(css=css) as demo: gr.Markdown("""# SDXL Flash ### First Image processing takes time then images generate faster.""") with gr.Group(): with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Gallery(label="Result", columns=1) with gr.Accordion("Advanced options", open=False): with gr.Row(): use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True) negative_prompt = gr.Text( label="Negative prompt", max_lines=5, lines=4, placeholder="Enter a negative prompt", value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, NSFW", visible=True, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(visible=True): width = gr.Slider( label="Width", minimum=512, maximum=MAX_IMAGE_SIZE, step=64, value=1024, ) height = gr.Slider( label="Height", minimum=512, maximum=MAX_IMAGE_SIZE, step=64, value=1024, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance Scale", minimum=0.1, maximum=6, step=0.1, value=3.0, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=15, step=1, value=8, ) gr.Examples( examples=examples, inputs=prompt, outputs=[result, seed], fn=generate, cache_examples=CACHE_EXAMPLES, ) use_negative_prompt.change( fn=lambda x: gr.update(visible=x), inputs=use_negative_prompt, outputs=negative_prompt, api_name=False, ) gr.on( triggers=[ prompt.submit, negative_prompt.submit, run_button.click, ], fn=generate, inputs=[ prompt, negative_prompt, use_negative_prompt, seed, width, height, guidance_scale, num_inference_steps, randomize_seed, ], outputs=[result, seed], api_name="run", ) if __name__ == "__main__": demo.queue(max_size=20).launch()