Update app.py
Browse files
app.py
CHANGED
@@ -1,28 +1,4 @@
|
|
1 |
-
pip install diffusers transformers torch numpy scipy gradio datasets
|
2 |
-
pip3 install torch==1.9.1+cu111 torchvision==0.10.1+cu111 torchaudio===0.9.1 -f https://download.pytorch.org/whl/torch_stable.html
|
3 |
-
|
4 |
-
import torch
|
5 |
-
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoConfig
|
6 |
-
import numpy as np
|
7 |
-
from scipy.special import softmax
|
8 |
import gradio as gr
|
9 |
-
torch.cuda.is_available()
|
10 |
-
|
11 |
-
model_path = "cardiffnlp/twitter-roberta-base-sentiment-latest"
|
12 |
-
|
13 |
-
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
14 |
-
config = AutoConfig.from_pretrained(model_path)
|
15 |
-
model = AutoModelForSequenceClassification.from_pretrained(model_path)
|
16 |
-
|
17 |
-
|
18 |
-
def sentiment_analysis(text):
|
19 |
-
encoded_input = tokenizer(text, return_tensors='pt')
|
20 |
-
output = model(**encoded_input)
|
21 |
-
scores_ = output[0][0].detach().numpy()
|
22 |
-
scores_ = softmax(scores_)
|
23 |
-
labels = ['Negative', 'Neutral', 'Positive']
|
24 |
-
scores = {l: float(s) for (l, s) in zip(labels, scores_)}
|
25 |
-
return scores
|
26 |
|
27 |
demo = gr.Interface(
|
28 |
theme=gr.themes.Base(),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
demo = gr.Interface(
|
4 |
theme=gr.themes.Base(),
|