# import os | |
# import matplotlib | |
# matplotlib.use('Agg') # Use the 'Agg' backend for non-interactive use | |
# import streamlit as st | |
# import tkinter as tk | |
# from tkinter import scrolledtext | |
# import requests | |
# SECRET_TOKEN = os.getenv("SECRET_TOKEN") | |
# API_URL = "https://api-inference.huggingface.co/models/ahmedrachid/FinancialBERT-Sentiment-Analysis" | |
# headers = {"Authorization": f"Bearer {SECRET_TOKEN}"} | |
# def query(payload): | |
# response = requests.post(API_URL, headers=headers, json=payload) | |
# return response.json() | |
# user_query = st.text_area("Enter your text:") | |
# if st.button("Analyze Sentiment"): | |
# output = query({"inputs": user_query}) | |
# st.text("Sentiment Analysis Output:") | |
# st.text(output[0][0]['label']) | |
import os | |
import streamlit as st | |
import requests | |
SECRET_TOKEN = os.getenv("SECRET_TOKEN") | |
API_URL = "https://api-inference.huggingface.co/models/ahmedrachid/FinancialBERT-Sentiment-Analysis" | |
headers = {"Authorization": f"Bearer {SECRET_TOKEN}"} | |
def query(payload): | |
response = requests.post(API_URL, headers=headers, json=payload) | |
return response.json() | |
user_query = st.text_area("Enter your text:") | |
if st.button("Analyze Sentiment"): | |
# Show loading message while the model is loading | |
with st.spinner("Analyzing..."): | |
# Load the model | |
output = query({"inputs": user_query}) | |
# Display results after loading | |
st.text("Sentiment Analysis Output:") | |
st.text(output[0][0]['label']) | |