File size: 14,020 Bytes
e3e6cb3 78b6bf0 107eeac 6de3522 107eeac 78b6bf0 107eeac 78b6bf0 b5bac24 78b6bf0 107eeac 78b6bf0 b5bac24 78b6bf0 107eeac 78b6bf0 107eeac b5bac24 78b6bf0 f2a3f8d 107eeac ef0e26b 78b6bf0 107eeac 78b6bf0 6de3522 107eeac aefd3f3 b5bac24 107eeac aefd3f3 b5bac24 78b6bf0 107eeac 78b6bf0 107eeac 78b6bf0 6de3522 f2a3f8d 6de3522 107eeac 6de3522 446d837 6de3522 f2a3f8d 107eeac 6de3522 a1229f4 78b6bf0 f2a3f8d 6de3522 78b6bf0 b5bac24 ef73374 f2a3f8d 78b6bf0 b5bac24 78b6bf0 107eeac 78b6bf0 b5bac24 78b6bf0 b5bac24 78b6bf0 446cc82 78b6bf0 f2a3f8d 6de3522 b80ae6b 6de3522 78b6bf0 f2a3f8d 78b6bf0 6de3522 107eeac 6de3522 9aa82d5 6de3522 78b6bf0 6de3522 107eeac 0569b2c 6de3522 b80ae6b 6de3522 b80ae6b 6de3522 78b6bf0 6de3522 107eeac 6de3522 107eeac 78b6bf0 6de3522 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 |
print("Starting up. Please be patient...")
import argparse
import datetime
import os
import sys
from typing import Optional
import json
import utils
import gradio as gr
import torch
import yaml
from common.constants import (
DEFAULT_ASSIST_TEXT_WEIGHT,
DEFAULT_LENGTH,
DEFAULT_LINE_SPLIT,
DEFAULT_NOISE,
DEFAULT_NOISEW,
DEFAULT_SDP_RATIO,
DEFAULT_SPLIT_INTERVAL,
DEFAULT_STYLE,
DEFAULT_STYLE_WEIGHT,
Languages,
)
from common.log import logger
from common.tts_model import ModelHolder
from infer import InvalidToneError
from text.japanese import g2kata_tone, kata_tone2phone_tone, text_normalize
is_hf_spaces = os.getenv("SYSTEM") == "spaces"
limit = 150
# Get path settings
with open(os.path.join("configs", "paths.yml"), "r", encoding="utf-8") as f:
path_config: dict[str, str] = yaml.safe_load(f.read())
# dataset_root = path_config["dataset_root"]
assets_root = path_config["assets_root"]
def tts_fn(
model_name,
model_path,
text,
language,
reference_audio_path,
sdp_ratio,
noise_scale,
noise_scale_w,
length_scale,
line_split,
split_interval,
assist_text,
assist_text_weight,
use_assist_text,
style,
style_weight,
kata_tone_json_str,
use_tone,
speaker,
):
if len(text)<2:
return "Please enter some text.", None, kata_tone_json_str
if is_hf_spaces and len(text) > limit:
return f"Too long! There is a character limit of {limit} characters.", None, kata_tone_json_str
if(not model_holder.current_model):
model_holder.load_model_gr(model_name, model_path)
logger.info(f"Loaded model '{model_name}'")
if(model_holder.current_model.model_path != model_path):
model_holder.load_model_gr(model_name, model_path)
logger.info(f"Swapped to model '{model_name}'")
speaker_id = model_holder.current_model.spk2id[speaker]
start_time = datetime.datetime.now()
wrong_tone_message = ""
kata_tone: Optional[list[tuple[str, int]]] = None
if use_tone and kata_tone_json_str != "":
if language != "JP":
#logger.warning("Only Japanese is supported for tone generation.")
wrong_tone_message = "アクセント指定は現在日本語のみ対応しています。"
if line_split:
#logger.warning("Tone generation is not supported for line split.")
wrong_tone_message = (
"アクセント指定は改行で分けて生成を使わない場合のみ対応しています。"
)
try:
kata_tone = []
json_data = json.loads(kata_tone_json_str)
# tupleを使うように変換
for kana, tone in json_data:
assert isinstance(kana, str) and tone in (0, 1), f"{kana}, {tone}"
kata_tone.append((kana, tone))
except Exception as e:
logger.warning(f"Error occurred when parsing kana_tone_json: {e}")
wrong_tone_message = f"アクセント指定が不正です: {e}"
kata_tone = None
# toneは実際に音声合成に代入される際のみnot Noneになる
tone: Optional[list[int]] = None
if kata_tone is not None:
phone_tone = kata_tone2phone_tone(kata_tone)
tone = [t for _, t in phone_tone]
try:
sr, audio = model_holder.current_model.infer(
text=text,
language=language,
reference_audio_path=reference_audio_path,
sdp_ratio=sdp_ratio,
noise=noise_scale,
noisew=noise_scale_w,
length=length_scale,
line_split=line_split,
split_interval=split_interval,
assist_text=assist_text,
assist_text_weight=assist_text_weight,
use_assist_text=use_assist_text,
style=style,
style_weight=style_weight,
given_tone=tone,
sid=speaker_id,
)
except InvalidToneError as e:
logger.error(f"Tone error: {e}")
return f"Error: アクセント指定が不正です:\n{e}", None, kata_tone_json_str
except ValueError as e:
logger.error(f"Value error: {e}")
return f"Error: {e}", None, kata_tone_json_str
end_time = datetime.datetime.now()
duration = (end_time - start_time).total_seconds()
if tone is None and language == "JP":
# アクセント指定に使えるようにアクセント情報を返す
norm_text = text_normalize(text)
kata_tone = g2kata_tone(norm_text)
kata_tone_json_str = json.dumps(kata_tone, ensure_ascii=False)
elif tone is None:
kata_tone_json_str = ""
if reference_audio_path:
style="External Audio"
logger.info(f"Successful inference, took {duration}s | {speaker} | {language}/{sdp_ratio}/{noise_scale}/{noise_scale_w}/{length_scale}/{style}/{style_weight} | {text}")
message = f"Success, time: {duration} seconds."
if wrong_tone_message != "":
message = wrong_tone_message + "\n" + message
return message, (sr, audio), kata_tone_json_str
def load_voicedata():
print("Loading voice data...")
voices = []
styledict = {}
with open("voicelist.json", "r", encoding="utf-8") as f:
voc_info = json.load(f)
for name, info in voc_info.items():
if not info['enable']:
continue
model_path = info['model_path']
voice_name = info['title']
speakerid = info['speakerid']
datasetauthor = info['datasetauthor']
image = info['cover']
if not model_path in styledict.keys():
conf=f"model_assets/{model_path}/config.json"
hps = utils.get_hparams_from_file(conf)
s2id = hps.data.style2id
styledict[model_path] = s2id.keys()
print(f"Indexed voice {voice_name}")
voices.append((name, model_path, voice_name, speakerid, datasetauthor, image))
return voices, styledict
initial_text = "Hello there! This is test audio of a new Hololive text to speech tool."
initial_md = """
# Hololive [Style-Bert-VITS2](https://github.com/litagin02/Style-Bert-VITS2)
### Space by [Kit Lemonfoot](https://huggingface.co/Kit-Lemonfoot)/[Noel Shirogane's High Flying Birds](https://www.youtube.com/channel/UCG9A0OJsJTluLOXfMZjJ9xA)
### Based on code originally by [fishaudio](https://github.com/fishaudio) and [litagin02](https://github.com/litagin02)
Do no evil.
**Note:** Most of the models are a *work in progress.* They may not sound fully correct.
"""
style_md = """
- You can control things like voice tone, emotion, and reading style through presets or through voice files.
- Neutral acts as an average across all speakers. Styling options act as an override to Neutral.
- Setting the intensity too high will likely break the output.
- The required intensity will depend based on the speaker and the desired style.
- If you're using preexisting audio data to style the output, try to use a voice that is similar to the desired speaker.
"""
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--cpu", action="store_true", help="Use CPU instead of GPU")
parser.add_argument(
"--dir", "-d", type=str, help="Model directory", default=assets_root
)
parser.add_argument(
"--share", action="store_true", help="Share this app publicly", default=False
)
parser.add_argument(
"--server-name",
type=str,
default=None,
help="Server name for Gradio app",
)
parser.add_argument(
"--no-autolaunch",
action="store_true",
default=False,
help="Do not launch app automatically",
)
args = parser.parse_args()
model_dir = args.dir
if args.cpu:
device = "cpu"
else:
device = "cuda" if torch.cuda.is_available() else "cpu"
model_holder = ModelHolder(model_dir, device)
languages = ["EN", "JP", "ZH"]
model_names = model_holder.model_names
if len(model_names) == 0:
logger.error(f"No models found. Please place the model in {model_dir}.")
sys.exit(1)
initial_id = 0
initial_pth_files = model_holder.model_files_dict[model_names[initial_id]]
#print(initial_pth_files)
voicedata, styledict = load_voicedata()
#Gradio preload
text_input = gr.TextArea(label="Text", value=initial_text)
line_split = gr.Checkbox(label="Divide text seperately by line breaks", value=True)
split_interval = gr.Slider(
minimum=0.0,
maximum=2,
value=0.5,
step=0.1,
label="Length of division seperation time (in seconds)",
)
language = gr.Dropdown(choices=languages, value="EN", label="Language")
sdp_ratio = gr.Slider(
minimum=0, maximum=1, value=0.2, step=0.1, label="SDP Ratio"
)
noise_scale = gr.Slider(
minimum=0.1, maximum=2, value=0.6, step=0.1, label="Noise"
)
noise_scale_w = gr.Slider(
minimum=0.1, maximum=2, value=0.8, step=0.1, label="Noise_W"
)
length_scale = gr.Slider(
minimum=0.1, maximum=2, value=1.0, step=0.1, label="Length"
)
use_style_text = gr.Checkbox(label="Use stylization text", value=False)
style_text = gr.Textbox(
label="Style text",
placeholder="Check the \"Use stylization text\" box to use this option!",
info="The voice will be similar in tone and emotion to the text, however inflection and tempo may be worse as a result.",
visible=True,
)
style_text_weight = gr.Slider(
minimum=0,
maximum=1,
value=0.7,
step=0.1,
label="Text stylization strength",
visible=True,
)
with gr.Blocks(theme=gr.themes.Base(primary_hue="emerald", secondary_hue="green"), title="Hololive Style-Bert-VITS2") as app:
gr.Markdown(initial_md)
#NOT USED SINCE NONE OF MY MODELS ARE JPEXTRA.
#ONLY HERE FOR COMPATIBILITY WITH THE EXISTING INFER CODE.
#DO NOT RENDER OR MAKE VISIBLE
tone = gr.Textbox(
label="Accent adjustment (0 for low, 1 for high)",
info="This can only be used when not seperated by line breaks. It is not universal.",
visible=False
)
use_tone = gr.Checkbox(label="Use accent adjustment", value=False, visible=False)
for (name, model_path, voice_name, speakerid, datasetauthor, image) in voicedata:
with gr.TabItem(name):
mn = gr.Textbox(value=model_path, visible=False, interactive=False)
mp = gr.Textbox(value=f"model_assets/{model_path}/{model_path}.safetensors", visible=False, interactive=False)
spk = gr.Textbox(value=speakerid, visible=False, interactive=False)
with gr.Row():
with gr.Column():
gr.Markdown(f"**{voice_name}**\n\nModel name: {model_path} | Dataset author: {datasetauthor}")
gr.Image(f"images/{image}", label=None, show_label=False, width=300, show_download_button=False, container=False, show_share_button=False)
with gr.Column():
with gr.TabItem("Style using a preset"):
style = gr.Dropdown(
label="Current style (Neutral is an average style)",
choices=styledict[model_path],
value="Neutral",
)
with gr.TabItem("Style using existing audio"):
ref_audio_path = gr.Audio(label="Reference Audio", type="filepath")
style_weight = gr.Slider(
minimum=0,
maximum=50,
value=5,
step=0.1,
label="Style strength",
)
with gr.Column():
tts_button = gr.Button(
"Synthesize", variant="primary", interactive=True
)
text_output = gr.Textbox(label="Info")
audio_output = gr.Audio(label="Result")
tts_button.click(
tts_fn,
inputs=[
mn,
mp,
text_input,
language,
ref_audio_path,
sdp_ratio,
noise_scale,
noise_scale_w,
length_scale,
line_split,
split_interval,
style_text,
style_text_weight,
use_style_text,
style,
style_weight,
tone,
use_tone,
spk,
],
outputs=[text_output, audio_output, tone],
)
with gr.Row():
with gr.Column():
text_input.render()
line_split.render()
split_interval.render()
language.render()
with gr.Column():
sdp_ratio.render()
noise_scale.render()
noise_scale_w.render()
length_scale.render()
use_style_text.render()
style_text.render()
style_text_weight.render()
with gr.Accordion("Styling Guide", open=False):
gr.Markdown(style_md)
app.launch(allowed_paths=['/file/images/'])
|