swin2sr / app.py
jjourney1125's picture
Update app.py
182192a
import argparse
import cv2
import glob
import numpy as np
import gradio as gr
from collections import OrderedDict
import os
import torch
import requests
from PIL import Image
from models.network_swin2sr import Swin2SR as net
from utils import util_calculate_psnr_ssim as util
def setup_model(args):
model = define_model(args)
model.eval()
model = model.to(device)
return model
def main(img):
# setup folder and path
#basewidth = 256
#wpercent = (basewidth/float(img.size[0]))
#hsize = int((float(img.size[1])*float(wpercent)))
#img = img.resize((basewidth,hsize), Image.ANTIALIAS)
img.save("test/1.png", "PNG")
folder, save_dir, border, window_size = setup(args)
os.makedirs(save_dir, exist_ok=True)
test_results = OrderedDict()
test_results['psnr'] = []
test_results['ssim'] = []
test_results['psnr_y'] = []
test_results['ssim_y'] = []
test_results['psnrb'] = []
test_results['psnrb_y'] = []
psnr, ssim, psnr_y, ssim_y, psnrb, psnrb_y = 0, 0, 0, 0, 0, 0
for idx, path in enumerate(sorted(glob.glob(os.path.join(folder, '*')))):
# read image
imgname, img_lq, img_gt = get_image_pair(args, path) # image to HWC-BGR, float32
img_lq = np.transpose(img_lq if img_lq.shape[2] == 1 else img_lq[:, :, [2, 1, 0]], (2, 0, 1)) # HCW-BGR to CHW-RGB
img_lq = torch.from_numpy(img_lq).float().unsqueeze(0).to(device) # CHW-RGB to NCHW-RGB
# inference
with torch.no_grad():
# pad input image to be a multiple of window_size
_, _, h_old, w_old = img_lq.size()
h_pad = (h_old // window_size + 1) * window_size - h_old
w_pad = (w_old // window_size + 1) * window_size - w_old
img_lq = torch.cat([img_lq, torch.flip(img_lq, [2])], 2)[:, :, :h_old + h_pad, :]
img_lq = torch.cat([img_lq, torch.flip(img_lq, [3])], 3)[:, :, :, :w_old + w_pad]
output = test(img_lq, model, args, window_size)
if args.task == 'compressed_sr':
output = output[0][..., :h_old * args.scale, :w_old * args.scale]
else:
output = output[..., :h_old * args.scale, :w_old * args.scale]
# save image
output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy()
if output.ndim == 3:
output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0)) # CHW-RGB to HCW-BGR
output = (output * 255.0).round().astype(np.uint8) # float32 to uint8
cv2.imwrite(f'{save_dir}/{imgname}_Swin2SR.png', output)
# evaluate psnr/ssim/psnr_b
if img_gt is not None:
img_gt = (img_gt * 255.0).round().astype(np.uint8) # float32 to uint8
img_gt = img_gt[:h_old * args.scale, :w_old * args.scale, ...] # crop gt
img_gt = np.squeeze(img_gt)
psnr = util.calculate_psnr(output, img_gt, crop_border=border)
ssim = util.calculate_ssim(output, img_gt, crop_border=border)
test_results['psnr'].append(psnr)
test_results['ssim'].append(ssim)
if img_gt.ndim == 3: # RGB image
psnr_y = util.calculate_psnr(output, img_gt, crop_border=border, test_y_channel=True)
ssim_y = util.calculate_ssim(output, img_gt, crop_border=border, test_y_channel=True)
test_results['psnr_y'].append(psnr_y)
test_results['ssim_y'].append(ssim_y)
if args.task in ['jpeg_car', 'color_jpeg_car']:
psnrb = util.calculate_psnrb(output, img_gt, crop_border=border, test_y_channel=False)
test_results['psnrb'].append(psnrb)
if args.task in ['color_jpeg_car']:
psnrb_y = util.calculate_psnrb(output, img_gt, crop_border=border, test_y_channel=True)
test_results['psnrb_y'].append(psnrb_y)
print('Testing {:d} {:20s} - PSNR: {:.2f} dB; SSIM: {:.4f}; PSNRB: {:.2f} dB;'
'PSNR_Y: {:.2f} dB; SSIM_Y: {:.4f}; PSNRB_Y: {:.2f} dB.'.
format(idx, imgname, psnr, ssim, psnrb, psnr_y, ssim_y, psnrb_y))
else:
print('Testing {:d} {:20s}'.format(idx, imgname))
# summarize psnr/ssim
if img_gt is not None:
ave_psnr = sum(test_results['psnr']) / len(test_results['psnr'])
ave_ssim = sum(test_results['ssim']) / len(test_results['ssim'])
print('\n{} \n-- Average PSNR/SSIM(RGB): {:.2f} dB; {:.4f}'.format(save_dir, ave_psnr, ave_ssim))
if img_gt.ndim == 3:
ave_psnr_y = sum(test_results['psnr_y']) / len(test_results['psnr_y'])
ave_ssim_y = sum(test_results['ssim_y']) / len(test_results['ssim_y'])
print('-- Average PSNR_Y/SSIM_Y: {:.2f} dB; {:.4f}'.format(ave_psnr_y, ave_ssim_y))
if args.task in ['jpeg_car', 'color_jpeg_car']:
ave_psnrb = sum(test_results['psnrb']) / len(test_results['psnrb'])
print('-- Average PSNRB: {:.2f} dB'.format(ave_psnrb))
if args.task in ['color_jpeg_car']:
ave_psnrb_y = sum(test_results['psnrb_y']) / len(test_results['psnrb_y'])
print('-- Average PSNRB_Y: {:.2f} dB'.format(ave_psnrb_y))
return f"results/swin2sr_{args.task}_x{args.scale}/1_Swin2SR.png"
def define_model(args):
# 001 classical image sr
if args.task == 'classical_sr':
model = net(upscale=args.scale, in_chans=3, img_size=args.training_patch_size, window_size=8,
img_range=1., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6],
mlp_ratio=2, upsampler='pixelshuffle', resi_connection='1conv')
param_key_g = 'params'
# 002 lightweight image sr
# use 'pixelshuffledirect' to save parameters
elif args.task in ['lightweight_sr']:
model = net(upscale=args.scale, in_chans=3, img_size=64, window_size=8,
img_range=1., depths=[6, 6, 6, 6], embed_dim=60, num_heads=[6, 6, 6, 6],
mlp_ratio=2, upsampler='pixelshuffledirect', resi_connection='1conv')
param_key_g = 'params'
elif args.task == 'compressed_sr':
model = net(upscale=args.scale, in_chans=3, img_size=args.training_patch_size, window_size=8,
img_range=1., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6],
mlp_ratio=2, upsampler='pixelshuffle_aux', resi_connection='1conv')
param_key_g = 'params'
# 003 real-world image sr
elif args.task == 'real_sr':
if not args.large_model:
# use 'nearest+conv' to avoid block artifacts
model = net(upscale=args.scale, in_chans=3, img_size=64, window_size=8,
img_range=1., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6],
mlp_ratio=2, upsampler='nearest+conv', resi_connection='1conv')
else:
# larger model size; use '3conv' to save parameters and memory; use ema for GAN training
model = net(upscale=args.scale, in_chans=3, img_size=64, window_size=8,
img_range=1., depths=[6, 6, 6, 6, 6, 6, 6, 6, 6], embed_dim=240,
num_heads=[8, 8, 8, 8, 8, 8, 8, 8, 8],
mlp_ratio=2, upsampler='nearest+conv', resi_connection='3conv')
param_key_g = 'params_ema'
# 006 grayscale JPEG compression artifact reduction
# use window_size=7 because JPEG encoding uses 8x8; use img_range=255 because it's sligtly better than 1
elif args.task == 'jpeg_car':
model = net(upscale=1, in_chans=1, img_size=126, window_size=7,
img_range=255., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6],
mlp_ratio=2, upsampler='', resi_connection='1conv')
param_key_g = 'params'
# 006 color JPEG compression artifact reduction
# use window_size=7 because JPEG encoding uses 8x8; use img_range=255 because it's sligtly better than 1
elif args.task == 'color_jpeg_car':
model = net(upscale=1, in_chans=3, img_size=126, window_size=7,
img_range=255., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6],
mlp_ratio=2, upsampler='', resi_connection='1conv')
param_key_g = 'params'
pretrained_model = torch.load(args.model_path)
model.load_state_dict(pretrained_model[param_key_g] if param_key_g in pretrained_model.keys() else pretrained_model, strict=True)
return model
def setup(args):
# 001 classical image sr/ 002 lightweight image sr
if args.task in ['classical_sr', 'lightweight_sr', 'compressed_sr']:
save_dir = f'results/swin2sr_{args.task}_x{args.scale}'
if args.save_img_only:
folder = args.folder_lq
else:
folder = args.folder_gt
border = args.scale
window_size = 8
# 003 real-world image sr
elif args.task in ['real_sr']:
save_dir = f'results/swin2sr_{args.task}_x{args.scale}'
if args.large_model:
save_dir += '_large'
folder = args.folder_lq
border = 0
window_size = 8
# 006 JPEG compression artifact reduction
elif args.task in ['jpeg_car', 'color_jpeg_car']:
save_dir = f'results/swin2sr_{args.task}_jpeg{args.jpeg}'
folder = args.folder_gt
border = 0
window_size = 7
return folder, save_dir, border, window_size
def get_image_pair(args, path):
(imgname, imgext) = os.path.splitext(os.path.basename(path))
# 001 classical image sr/ 002 lightweight image sr (load lq-gt image pairs)
if args.task in ['classical_sr', 'lightweight_sr']:
if args.save_img_only:
img_gt = None
img_lq = cv2.imread(path, cv2.IMREAD_COLOR).astype(np.float32) / 255.
else:
img_gt = cv2.imread(path, cv2.IMREAD_COLOR).astype(np.float32) / 255.
img_lq = cv2.imread(f'{args.folder_lq}/{imgname}x{args.scale}{imgext}', cv2.IMREAD_COLOR).astype(
np.float32) / 255.
elif args.task in ['compressed_sr']:
if args.save_img_only:
img_gt = None
img_lq = cv2.imread(path, cv2.IMREAD_COLOR).astype(np.float32) / 255.
else:
img_gt = cv2.imread(path, cv2.IMREAD_COLOR).astype(np.float32) / 255.
img_lq = cv2.imread(f'{args.folder_lq}/{imgname}.jpg', cv2.IMREAD_COLOR).astype(
np.float32) / 255.
# 003 real-world image sr (load lq image only)
elif args.task in ['real_sr', 'lightweight_sr_infer']:
img_gt = None
img_lq = cv2.imread(path, cv2.IMREAD_COLOR).astype(np.float32) / 255.
# 006 grayscale JPEG compression artifact reduction (load gt image and generate lq image on-the-fly)
elif args.task in ['jpeg_car']:
img_gt = cv2.imread(path, cv2.IMREAD_UNCHANGED)
if img_gt.ndim != 2:
img_gt = util.bgr2ycbcr(img_gt, y_only=True)
result, encimg = cv2.imencode('.jpg', img_gt, [int(cv2.IMWRITE_JPEG_QUALITY), args.jpeg])
img_lq = cv2.imdecode(encimg, 0)
img_gt = np.expand_dims(img_gt, axis=2).astype(np.float32) / 255.
img_lq = np.expand_dims(img_lq, axis=2).astype(np.float32) / 255.
# 006 JPEG compression artifact reduction (load gt image and generate lq image on-the-fly)
elif args.task in ['color_jpeg_car']:
img_gt = cv2.imread(path)
result, encimg = cv2.imencode('.jpg', img_gt, [int(cv2.IMWRITE_JPEG_QUALITY), args.jpeg])
img_lq = cv2.imdecode(encimg, 1)
img_gt = img_gt.astype(np.float32)/ 255.
img_lq = img_lq.astype(np.float32)/ 255.
return imgname, img_lq, img_gt
def test(img_lq, model, args, window_size):
if args.tile is None:
# test the image as a whole
output = model(img_lq)
else:
# test the image tile by tile
b, c, h, w = img_lq.size()
tile = min(args.tile, h, w)
assert tile % window_size == 0, "tile size should be a multiple of window_size"
tile_overlap = args.tile_overlap
sf = args.scale
stride = tile - tile_overlap
h_idx_list = list(range(0, h-tile, stride)) + [h-tile]
w_idx_list = list(range(0, w-tile, stride)) + [w-tile]
E = torch.zeros(b, c, h*sf, w*sf).type_as(img_lq)
W = torch.zeros_like(E)
for h_idx in h_idx_list:
for w_idx in w_idx_list:
in_patch = img_lq[..., h_idx:h_idx+tile, w_idx:w_idx+tile]
out_patch = model(in_patch)
out_patch_mask = torch.ones_like(out_patch)
E[..., h_idx*sf:(h_idx+tile)*sf, w_idx*sf:(w_idx+tile)*sf].add_(out_patch)
W[..., h_idx*sf:(h_idx+tile)*sf, w_idx*sf:(w_idx+tile)*sf].add_(out_patch_mask)
output = E.div_(W)
return output
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default='compressed_sr', help='classical_sr, lightweight_sr, real_sr, '
'gray_dn, color_dn, jpeg_car, color_jpeg_car')
parser.add_argument('--scale', type=int, default=4, help='scale factor: 1, 2, 3, 4, 8') # 1 for dn and jpeg car
parser.add_argument('--noise', type=int, default=15, help='noise level: 15, 25, 50')
parser.add_argument('--jpeg', type=int, default=10, help='scale factor: 10, 20, 30, 40')
parser.add_argument('--training_patch_size', type=int, default=48, help='patch size used in training Swin2SR. '
'Just used to differentiate two different settings in Table 2 of the paper. '
'Images are NOT tested patch by patch.')
parser.add_argument('--large_model', action='store_true', help='use large model, only provided for real image sr')
parser.add_argument('--model_path', type=str,
default='experiments/pretrained_models/Swin2SR_CompressedSR_X4_48.pth')
parser.add_argument('--folder_lq', type=str, default="test", help='input low-quality test image folder')
parser.add_argument('--folder_gt', type=str, default=None, help='input ground-truth test image folder')
parser.add_argument('--tile', type=int, default=None, help='Tile size, None for no tile during testing (testing as a whole)')
parser.add_argument('--tile_overlap', type=int, default=32, help='Overlapping of different tiles')
parser.add_argument('--save_img_only', default=True, action='store_true', help='save image and do not evaluate')
args = parser.parse_args()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# set up model
if os.path.exists(args.model_path):
print(f'loading model from {args.model_path}')
else:
os.makedirs(os.path.dirname(args.model_path), exist_ok=True)
url = 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/{}'.format(os.path.basename(args.model_path))
r = requests.get(url, allow_redirects=True)
print(f'downloading model {args.model_path}')
open(args.model_path, 'wb').write(r.content)
model = setup_model(args)
os.makedirs("test", exist_ok=True)
#main(img)
title = "Super-Resolution Demo Swin2SR Official ๐Ÿš€๐Ÿš€๐Ÿ”ฅ"
description = '''
<br>
**This Demo expects low-quality and low-resolution JPEG compressed images, in the near future we will support any kind of input**
**We are looking for collaborators! Collaborator๋ฅผ ์ฐพ๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค!** ๐Ÿ‡ฌ๐Ÿ‡ง ๐Ÿ‡ช๐Ÿ‡ธ ๐Ÿ‡ฐ๐Ÿ‡ท ๐Ÿ‡ซ๐Ÿ‡ท ๐Ÿ‡ท๐Ÿ‡ด ๐Ÿ‡ฉ๐Ÿ‡ช ๐Ÿ‡จ๐Ÿ‡ณ
**Please check our github project: https://github.com/mv-lab/swin2sr or paper: https://arxiv.org/abs/2209.11345 feel free to contact us**
**Demos also available at [google colab](https://colab.research.google.com/drive/1paPrt62ydwLv2U2eZqfcFsePI4X4WRR1?usp=sharing) and [Kaggle](https://www.kaggle.com/code/jesucristo/super-resolution-demo-swin2sr-official/)**
</br>
'''
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2209.11345' target='_blank'>Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration</a> | <a href='https://github.com/mv-lab/swin2sr' target='_blank'>Github Repo</a></p>"
examples= glob.glob("testsets/real-inputs/*.jpg")
gr.Interface(
main,
#gr.Image().style(full_width=True, height=60),
gr.inputs.Image(type="pil", label="Input").style(height=260),
gr.inputs.Image(type="pil", label="Ouput").style(height=240),
title=title,
description=description,
article=article,
examples=examples,
).launch(enable_queue=True)