Spaces:
Runtime error
Runtime error
jjourney1125
commited on
Commit
·
5fd5bbc
1
Parent(s):
195ab71
Add main_test_swin2sr module
Browse files- main_test_swin2sr.py +302 -0
main_test_swin2sr.py
ADDED
@@ -0,0 +1,302 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import cv2
|
3 |
+
import glob
|
4 |
+
import numpy as np
|
5 |
+
from collections import OrderedDict
|
6 |
+
import os
|
7 |
+
import torch
|
8 |
+
import requests
|
9 |
+
|
10 |
+
from models.network_swin2sr import Swin2SR as net
|
11 |
+
from utils import util_calculate_psnr_ssim as util
|
12 |
+
|
13 |
+
|
14 |
+
def main():
|
15 |
+
parser = argparse.ArgumentParser()
|
16 |
+
parser.add_argument('--task', type=str, default='color_dn', help='classical_sr, lightweight_sr, real_sr, '
|
17 |
+
'gray_dn, color_dn, jpeg_car, color_jpeg_car')
|
18 |
+
parser.add_argument('--scale', type=int, default=1, help='scale factor: 1, 2, 3, 4, 8') # 1 for dn and jpeg car
|
19 |
+
parser.add_argument('--noise', type=int, default=15, help='noise level: 15, 25, 50')
|
20 |
+
parser.add_argument('--jpeg', type=int, default=40, help='scale factor: 10, 20, 30, 40')
|
21 |
+
parser.add_argument('--training_patch_size', type=int, default=128, help='patch size used in training Swin2SR. '
|
22 |
+
'Just used to differentiate two different settings in Table 2 of the paper. '
|
23 |
+
'Images are NOT tested patch by patch.')
|
24 |
+
parser.add_argument('--large_model', action='store_true', help='use large model, only provided for real image sr')
|
25 |
+
parser.add_argument('--model_path', type=str,
|
26 |
+
default='model_zoo/swin2sr/Swin2SR_ClassicalSR_X2_64.pth')
|
27 |
+
parser.add_argument('--folder_lq', type=str, default=None, help='input low-quality test image folder')
|
28 |
+
parser.add_argument('--folder_gt', type=str, default=None, help='input ground-truth test image folder')
|
29 |
+
parser.add_argument('--tile', type=int, default=None, help='Tile size, None for no tile during testing (testing as a whole)')
|
30 |
+
parser.add_argument('--tile_overlap', type=int, default=32, help='Overlapping of different tiles')
|
31 |
+
parser.add_argument('--save_img_only', default=False, action='store_true', help='save image and do not evaluate')
|
32 |
+
args = parser.parse_args()
|
33 |
+
|
34 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
35 |
+
# set up model
|
36 |
+
if os.path.exists(args.model_path):
|
37 |
+
print(f'loading model from {args.model_path}')
|
38 |
+
else:
|
39 |
+
os.makedirs(os.path.dirname(args.model_path), exist_ok=True)
|
40 |
+
url = 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/{}'.format(os.path.basename(args.model_path))
|
41 |
+
r = requests.get(url, allow_redirects=True)
|
42 |
+
print(f'downloading model {args.model_path}')
|
43 |
+
open(args.model_path, 'wb').write(r.content)
|
44 |
+
|
45 |
+
model = define_model(args)
|
46 |
+
model.eval()
|
47 |
+
model = model.to(device)
|
48 |
+
|
49 |
+
# setup folder and path
|
50 |
+
folder, save_dir, border, window_size = setup(args)
|
51 |
+
os.makedirs(save_dir, exist_ok=True)
|
52 |
+
test_results = OrderedDict()
|
53 |
+
test_results['psnr'] = []
|
54 |
+
test_results['ssim'] = []
|
55 |
+
test_results['psnr_y'] = []
|
56 |
+
test_results['ssim_y'] = []
|
57 |
+
test_results['psnrb'] = []
|
58 |
+
test_results['psnrb_y'] = []
|
59 |
+
psnr, ssim, psnr_y, ssim_y, psnrb, psnrb_y = 0, 0, 0, 0, 0, 0
|
60 |
+
|
61 |
+
for idx, path in enumerate(sorted(glob.glob(os.path.join(folder, '*')))):
|
62 |
+
# read image
|
63 |
+
imgname, img_lq, img_gt = get_image_pair(args, path) # image to HWC-BGR, float32
|
64 |
+
img_lq = np.transpose(img_lq if img_lq.shape[2] == 1 else img_lq[:, :, [2, 1, 0]], (2, 0, 1)) # HCW-BGR to CHW-RGB
|
65 |
+
img_lq = torch.from_numpy(img_lq).float().unsqueeze(0).to(device) # CHW-RGB to NCHW-RGB
|
66 |
+
|
67 |
+
# inference
|
68 |
+
with torch.no_grad():
|
69 |
+
# pad input image to be a multiple of window_size
|
70 |
+
_, _, h_old, w_old = img_lq.size()
|
71 |
+
h_pad = (h_old // window_size + 1) * window_size - h_old
|
72 |
+
w_pad = (w_old // window_size + 1) * window_size - w_old
|
73 |
+
img_lq = torch.cat([img_lq, torch.flip(img_lq, [2])], 2)[:, :, :h_old + h_pad, :]
|
74 |
+
img_lq = torch.cat([img_lq, torch.flip(img_lq, [3])], 3)[:, :, :, :w_old + w_pad]
|
75 |
+
output = test(img_lq, model, args, window_size)
|
76 |
+
|
77 |
+
if args.task == 'compressed_sr':
|
78 |
+
output = output[0][..., :h_old * args.scale, :w_old * args.scale]
|
79 |
+
else:
|
80 |
+
output = output[..., :h_old * args.scale, :w_old * args.scale]
|
81 |
+
|
82 |
+
# save image
|
83 |
+
output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy()
|
84 |
+
if output.ndim == 3:
|
85 |
+
output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0)) # CHW-RGB to HCW-BGR
|
86 |
+
output = (output * 255.0).round().astype(np.uint8) # float32 to uint8
|
87 |
+
cv2.imwrite(f'{save_dir}/{imgname}_Swin2SR.png', output)
|
88 |
+
|
89 |
+
|
90 |
+
# evaluate psnr/ssim/psnr_b
|
91 |
+
if img_gt is not None:
|
92 |
+
img_gt = (img_gt * 255.0).round().astype(np.uint8) # float32 to uint8
|
93 |
+
img_gt = img_gt[:h_old * args.scale, :w_old * args.scale, ...] # crop gt
|
94 |
+
img_gt = np.squeeze(img_gt)
|
95 |
+
|
96 |
+
psnr = util.calculate_psnr(output, img_gt, crop_border=border)
|
97 |
+
ssim = util.calculate_ssim(output, img_gt, crop_border=border)
|
98 |
+
test_results['psnr'].append(psnr)
|
99 |
+
test_results['ssim'].append(ssim)
|
100 |
+
if img_gt.ndim == 3: # RGB image
|
101 |
+
psnr_y = util.calculate_psnr(output, img_gt, crop_border=border, test_y_channel=True)
|
102 |
+
ssim_y = util.calculate_ssim(output, img_gt, crop_border=border, test_y_channel=True)
|
103 |
+
test_results['psnr_y'].append(psnr_y)
|
104 |
+
test_results['ssim_y'].append(ssim_y)
|
105 |
+
if args.task in ['jpeg_car', 'color_jpeg_car']:
|
106 |
+
psnrb = util.calculate_psnrb(output, img_gt, crop_border=border, test_y_channel=False)
|
107 |
+
test_results['psnrb'].append(psnrb)
|
108 |
+
if args.task in ['color_jpeg_car']:
|
109 |
+
psnrb_y = util.calculate_psnrb(output, img_gt, crop_border=border, test_y_channel=True)
|
110 |
+
test_results['psnrb_y'].append(psnrb_y)
|
111 |
+
print('Testing {:d} {:20s} - PSNR: {:.2f} dB; SSIM: {:.4f}; PSNRB: {:.2f} dB;'
|
112 |
+
'PSNR_Y: {:.2f} dB; SSIM_Y: {:.4f}; PSNRB_Y: {:.2f} dB.'.
|
113 |
+
format(idx, imgname, psnr, ssim, psnrb, psnr_y, ssim_y, psnrb_y))
|
114 |
+
else:
|
115 |
+
print('Testing {:d} {:20s}'.format(idx, imgname))
|
116 |
+
|
117 |
+
# summarize psnr/ssim
|
118 |
+
if img_gt is not None:
|
119 |
+
ave_psnr = sum(test_results['psnr']) / len(test_results['psnr'])
|
120 |
+
ave_ssim = sum(test_results['ssim']) / len(test_results['ssim'])
|
121 |
+
print('\n{} \n-- Average PSNR/SSIM(RGB): {:.2f} dB; {:.4f}'.format(save_dir, ave_psnr, ave_ssim))
|
122 |
+
if img_gt.ndim == 3:
|
123 |
+
ave_psnr_y = sum(test_results['psnr_y']) / len(test_results['psnr_y'])
|
124 |
+
ave_ssim_y = sum(test_results['ssim_y']) / len(test_results['ssim_y'])
|
125 |
+
print('-- Average PSNR_Y/SSIM_Y: {:.2f} dB; {:.4f}'.format(ave_psnr_y, ave_ssim_y))
|
126 |
+
if args.task in ['jpeg_car', 'color_jpeg_car']:
|
127 |
+
ave_psnrb = sum(test_results['psnrb']) / len(test_results['psnrb'])
|
128 |
+
print('-- Average PSNRB: {:.2f} dB'.format(ave_psnrb))
|
129 |
+
if args.task in ['color_jpeg_car']:
|
130 |
+
ave_psnrb_y = sum(test_results['psnrb_y']) / len(test_results['psnrb_y'])
|
131 |
+
print('-- Average PSNRB_Y: {:.2f} dB'.format(ave_psnrb_y))
|
132 |
+
|
133 |
+
|
134 |
+
def define_model(args):
|
135 |
+
# 001 classical image sr
|
136 |
+
if args.task == 'classical_sr':
|
137 |
+
model = net(upscale=args.scale, in_chans=3, img_size=args.training_patch_size, window_size=8,
|
138 |
+
img_range=1., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6],
|
139 |
+
mlp_ratio=2, upsampler='pixelshuffle', resi_connection='1conv')
|
140 |
+
param_key_g = 'params'
|
141 |
+
|
142 |
+
# 002 lightweight image sr
|
143 |
+
# use 'pixelshuffledirect' to save parameters
|
144 |
+
elif args.task in ['lightweight_sr']:
|
145 |
+
model = net(upscale=args.scale, in_chans=3, img_size=64, window_size=8,
|
146 |
+
img_range=1., depths=[6, 6, 6, 6], embed_dim=60, num_heads=[6, 6, 6, 6],
|
147 |
+
mlp_ratio=2, upsampler='pixelshuffledirect', resi_connection='1conv')
|
148 |
+
param_key_g = 'params'
|
149 |
+
|
150 |
+
elif args.task == 'compressed_sr':
|
151 |
+
model = net(upscale=args.scale, in_chans=3, img_size=args.training_patch_size, window_size=8,
|
152 |
+
img_range=1., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6],
|
153 |
+
mlp_ratio=2, upsampler='pixelshuffle_aux', resi_connection='1conv')
|
154 |
+
param_key_g = 'params'
|
155 |
+
|
156 |
+
# 003 real-world image sr
|
157 |
+
elif args.task == 'real_sr':
|
158 |
+
if not args.large_model:
|
159 |
+
# use 'nearest+conv' to avoid block artifacts
|
160 |
+
model = net(upscale=args.scale, in_chans=3, img_size=64, window_size=8,
|
161 |
+
img_range=1., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6],
|
162 |
+
mlp_ratio=2, upsampler='nearest+conv', resi_connection='1conv')
|
163 |
+
else:
|
164 |
+
# larger model size; use '3conv' to save parameters and memory; use ema for GAN training
|
165 |
+
model = net(upscale=args.scale, in_chans=3, img_size=64, window_size=8,
|
166 |
+
img_range=1., depths=[6, 6, 6, 6, 6, 6, 6, 6, 6], embed_dim=240,
|
167 |
+
num_heads=[8, 8, 8, 8, 8, 8, 8, 8, 8],
|
168 |
+
mlp_ratio=2, upsampler='nearest+conv', resi_connection='3conv')
|
169 |
+
param_key_g = 'params_ema'
|
170 |
+
|
171 |
+
# 006 grayscale JPEG compression artifact reduction
|
172 |
+
# use window_size=7 because JPEG encoding uses 8x8; use img_range=255 because it's sligtly better than 1
|
173 |
+
elif args.task == 'jpeg_car':
|
174 |
+
model = net(upscale=1, in_chans=1, img_size=126, window_size=7,
|
175 |
+
img_range=255., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6],
|
176 |
+
mlp_ratio=2, upsampler='', resi_connection='1conv')
|
177 |
+
param_key_g = 'params'
|
178 |
+
|
179 |
+
# 006 color JPEG compression artifact reduction
|
180 |
+
# use window_size=7 because JPEG encoding uses 8x8; use img_range=255 because it's sligtly better than 1
|
181 |
+
elif args.task == 'color_jpeg_car':
|
182 |
+
model = net(upscale=1, in_chans=3, img_size=126, window_size=7,
|
183 |
+
img_range=255., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6],
|
184 |
+
mlp_ratio=2, upsampler='', resi_connection='1conv')
|
185 |
+
param_key_g = 'params'
|
186 |
+
|
187 |
+
pretrained_model = torch.load(args.model_path)
|
188 |
+
model.load_state_dict(pretrained_model[param_key_g] if param_key_g in pretrained_model.keys() else pretrained_model, strict=True)
|
189 |
+
|
190 |
+
return model
|
191 |
+
|
192 |
+
|
193 |
+
def setup(args):
|
194 |
+
# 001 classical image sr/ 002 lightweight image sr
|
195 |
+
if args.task in ['classical_sr', 'lightweight_sr', 'compressed_sr']:
|
196 |
+
save_dir = f'results/swin2sr_{args.task}_x{args.scale}'
|
197 |
+
if args.save_img_only:
|
198 |
+
folder = args.folder_lq
|
199 |
+
else:
|
200 |
+
folder = args.folder_gt
|
201 |
+
border = args.scale
|
202 |
+
window_size = 8
|
203 |
+
|
204 |
+
# 003 real-world image sr
|
205 |
+
elif args.task in ['real_sr']:
|
206 |
+
save_dir = f'results/swin2sr_{args.task}_x{args.scale}'
|
207 |
+
if args.large_model:
|
208 |
+
save_dir += '_large'
|
209 |
+
folder = args.folder_lq
|
210 |
+
border = 0
|
211 |
+
window_size = 8
|
212 |
+
|
213 |
+
# 006 JPEG compression artifact reduction
|
214 |
+
elif args.task in ['jpeg_car', 'color_jpeg_car']:
|
215 |
+
save_dir = f'results/swin2sr_{args.task}_jpeg{args.jpeg}'
|
216 |
+
folder = args.folder_gt
|
217 |
+
border = 0
|
218 |
+
window_size = 7
|
219 |
+
|
220 |
+
return folder, save_dir, border, window_size
|
221 |
+
|
222 |
+
|
223 |
+
def get_image_pair(args, path):
|
224 |
+
(imgname, imgext) = os.path.splitext(os.path.basename(path))
|
225 |
+
|
226 |
+
# 001 classical image sr/ 002 lightweight image sr (load lq-gt image pairs)
|
227 |
+
if args.task in ['classical_sr', 'lightweight_sr']:
|
228 |
+
if args.save_img_only:
|
229 |
+
img_gt = None
|
230 |
+
img_lq = cv2.imread(path, cv2.IMREAD_COLOR).astype(np.float32) / 255.
|
231 |
+
else:
|
232 |
+
img_gt = cv2.imread(path, cv2.IMREAD_COLOR).astype(np.float32) / 255.
|
233 |
+
img_lq = cv2.imread(f'{args.folder_lq}/{imgname}x{args.scale}{imgext}', cv2.IMREAD_COLOR).astype(
|
234 |
+
np.float32) / 255.
|
235 |
+
|
236 |
+
elif args.task in ['compressed_sr']:
|
237 |
+
if args.save_img_only:
|
238 |
+
img_gt = None
|
239 |
+
img_lq = cv2.imread(path, cv2.IMREAD_COLOR).astype(np.float32) / 255.
|
240 |
+
else:
|
241 |
+
img_gt = cv2.imread(path, cv2.IMREAD_COLOR).astype(np.float32) / 255.
|
242 |
+
img_lq = cv2.imread(f'{args.folder_lq}/{imgname}.jpg', cv2.IMREAD_COLOR).astype(
|
243 |
+
np.float32) / 255.
|
244 |
+
|
245 |
+
# 003 real-world image sr (load lq image only)
|
246 |
+
elif args.task in ['real_sr', 'lightweight_sr_infer']:
|
247 |
+
img_gt = None
|
248 |
+
img_lq = cv2.imread(path, cv2.IMREAD_COLOR).astype(np.float32) / 255.
|
249 |
+
|
250 |
+
# 006 grayscale JPEG compression artifact reduction (load gt image and generate lq image on-the-fly)
|
251 |
+
elif args.task in ['jpeg_car']:
|
252 |
+
img_gt = cv2.imread(path, cv2.IMREAD_UNCHANGED)
|
253 |
+
if img_gt.ndim != 2:
|
254 |
+
img_gt = util.bgr2ycbcr(img_gt, y_only=True)
|
255 |
+
result, encimg = cv2.imencode('.jpg', img_gt, [int(cv2.IMWRITE_JPEG_QUALITY), args.jpeg])
|
256 |
+
img_lq = cv2.imdecode(encimg, 0)
|
257 |
+
img_gt = np.expand_dims(img_gt, axis=2).astype(np.float32) / 255.
|
258 |
+
img_lq = np.expand_dims(img_lq, axis=2).astype(np.float32) / 255.
|
259 |
+
|
260 |
+
# 006 JPEG compression artifact reduction (load gt image and generate lq image on-the-fly)
|
261 |
+
elif args.task in ['color_jpeg_car']:
|
262 |
+
img_gt = cv2.imread(path)
|
263 |
+
result, encimg = cv2.imencode('.jpg', img_gt, [int(cv2.IMWRITE_JPEG_QUALITY), args.jpeg])
|
264 |
+
img_lq = cv2.imdecode(encimg, 1)
|
265 |
+
img_gt = img_gt.astype(np.float32)/ 255.
|
266 |
+
img_lq = img_lq.astype(np.float32)/ 255.
|
267 |
+
|
268 |
+
return imgname, img_lq, img_gt
|
269 |
+
|
270 |
+
|
271 |
+
def test(img_lq, model, args, window_size):
|
272 |
+
if args.tile is None:
|
273 |
+
# test the image as a whole
|
274 |
+
output = model(img_lq)
|
275 |
+
else:
|
276 |
+
# test the image tile by tile
|
277 |
+
b, c, h, w = img_lq.size()
|
278 |
+
tile = min(args.tile, h, w)
|
279 |
+
assert tile % window_size == 0, "tile size should be a multiple of window_size"
|
280 |
+
tile_overlap = args.tile_overlap
|
281 |
+
sf = args.scale
|
282 |
+
|
283 |
+
stride = tile - tile_overlap
|
284 |
+
h_idx_list = list(range(0, h-tile, stride)) + [h-tile]
|
285 |
+
w_idx_list = list(range(0, w-tile, stride)) + [w-tile]
|
286 |
+
E = torch.zeros(b, c, h*sf, w*sf).type_as(img_lq)
|
287 |
+
W = torch.zeros_like(E)
|
288 |
+
|
289 |
+
for h_idx in h_idx_list:
|
290 |
+
for w_idx in w_idx_list:
|
291 |
+
in_patch = img_lq[..., h_idx:h_idx+tile, w_idx:w_idx+tile]
|
292 |
+
out_patch = model(in_patch)
|
293 |
+
out_patch_mask = torch.ones_like(out_patch)
|
294 |
+
|
295 |
+
E[..., h_idx*sf:(h_idx+tile)*sf, w_idx*sf:(w_idx+tile)*sf].add_(out_patch)
|
296 |
+
W[..., h_idx*sf:(h_idx+tile)*sf, w_idx*sf:(w_idx+tile)*sf].add_(out_patch_mask)
|
297 |
+
output = E.div_(W)
|
298 |
+
|
299 |
+
return output
|
300 |
+
|
301 |
+
if __name__ == '__main__':
|
302 |
+
main()
|