tonyassi's picture
Update app.py
91e5c41 verified
raw
history blame
4.33 kB
import spaces
import gradio as gr
from diffusers import AutoPipelineForInpainting, AutoencoderKL
import torch
from PIL import Image, ImageOps
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipeline = AutoPipelineForInpainting.from_pretrained("diffusers/stable-diffusion-xl-1.0-inpainting-0.1", vae=vae, torch_dtype=torch.float16, variant="fp16", use_safetensors=True).to("cuda")
@spaces.GPU()
def get_select_index(evt: gr.SelectData):
return evt.index
@spaces.GPU()
def squarify_image(img):
if(img.height > img.width): bg_size = img.height
else: bg_size = img.width
bg = Image.new(mode="RGB", size=(bg_size,bg_size), color="white")
bg.paste(img, ( int((bg.width - bg.width)/2), 0) )
return bg
@spaces.GPU()
def divisible_by_8(image):
width, height = image.size
# Calculate the new width and height that are divisible by 8
new_width = (width // 8) * 8
new_height = (height // 8) * 8
# Resize the image
resized_image = image.resize((new_width, new_height))
return resized_image
@spaces.GPU()
def restore_version(index, versions):
print('restore version:', index)
final_dict = {'background': versions[index][0], 'layers': None, 'composite': versions[index][0]}
return final_dict
@spaces.GPU()
def generate(image_editor, prompt, neg_prompt, versions):
image = image_editor['background'].convert('RGB')
# Resize image
image.thumbnail((1024, 1024))
image = divisible_by_8(image)
original_image_size = image.size
# Mask layer
layer = image_editor["layers"][0].resize(image.size)
# Make image a square
image = squarify_image(image)
# Make sure mask is white with a black background
mask = Image.new("RGBA", image.size, "WHITE")
mask.paste(layer, (0, 0), layer)
mask = ImageOps.invert(mask.convert('L'))
# Inpaint
pipeline.to("cuda")
final_image = pipeline(prompt=prompt,
image=image,
mask_image=mask).images[0]
# Make sure the longest side of image is 1024
if (original_image_size[0] > original_image_size[1]):
original_image_size = ( original_image_size[0] * (1024/original_image_size[0]) , original_image_size[1] * (1024/original_image_size[0]))
else:
original_image_size = (original_image_size[0] * (1024/original_image_size[1]), original_image_size[1] * (1024/original_image_size[1]))
# Crop image to original aspect ratio
final_image = final_image.crop((0, 0, original_image_size[0], original_image_size[1]))
# gradio.ImageEditor requires a diction
final_dict = {'background': final_image, 'layers': None, 'composite': final_image}
# Add generated image to version gallery
if(versions==None):
final_gallery = [image_editor['background'] ,final_image]
else:
final_gallery = versions
final_gallery.append(final_image)
return final_dict, gr.Gallery(value=final_gallery, visible=True), gr.update(visible=True)
with gr.Blocks() as demo:
gr.Markdown("""
# Inpainting SDXL Sketch Pad
by [Tony Assi](https://www.tonyassi.com/)
Please ❤️ this Space. I build custom AI apps for companies. <a href="mailto: tony.assi.media@gmail.com">Email me</a> for business inquiries.
""")
with gr.Row():
with gr.Column():
sketch_pad = gr.ImageMask(type='pil', label='Inpaint')
prompt = gr.Textbox(label="Prompt")
generate_button = gr.Button("Generate")
with gr.Accordion("Advanced Settings", open=False):
neg_prompt = gr.Textbox(label='Negative Prompt', value='ugly, deformed')
with gr.Column():
version_gallery = gr.Gallery(label="Versions", type="pil", object_fit='contain', visible=False)
restore_button = gr.Button("Restore Version", visible=False)
selected = gr.Number(show_label=False, visible=True)
version_gallery.select(get_select_index, None, selected)
generate_button.click(fn=generate, inputs=[sketch_pad,prompt, neg_prompt, version_gallery], outputs=[sketch_pad, version_gallery, restore_button])
restore_button.click(fn=restore_version, inputs=[selected, version_gallery], outputs=sketch_pad)
demo.launch()