# !pip install ultralytics gradio supervision torch pillow opencv-python import spaces import supervision as sv import PIL.Image as Image import cv2 import numpy as np from ultralytics import YOLO import gradio as gr import torch # YOLO model filenames model_filenames = [ "yolo11n.pt", "yolo11s.pt", "yolo11m.pt", "yolo11l.pt", "yolo11x.pt" ] # Box annotator for drawing bounding boxes box_annotator = sv.BoxAnnotator() # COCO category dictionary for labeling classes category_dict = { 0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorcycle', 4: 'airplane', 5: 'bus', 6: 'train', 7: 'truck', 8: 'boat', 9: 'traffic light', 10: 'fire hydrant', 11: 'stop sign', 12: 'parking meter', 13: 'bench', 14: 'bird', 15: 'cat', 16: 'dog', 17: 'horse', 18: 'sheep', 19: 'cow', 20: 'elephant', 21: 'bear', 22: 'zebra', 23: 'giraffe', 24: 'backpack', 25: 'umbrella', 26: 'handbag', 27: 'tie', 28: 'suitcase', 29: 'frisbee', 30: 'skis', 31: 'snowboard', 32: 'sports ball', 33: 'kite', 34: 'baseball bat', 35: 'baseball glove', 36: 'skateboard', 37: 'surfboard', 38: 'tennis racket', 39: 'bottle', 40: 'wine glass', 41: 'cup', 42: 'fork', 43: 'knife', 44: 'spoon', 45: 'bowl', 46: 'banana', 47: 'apple', 48: 'sandwich', 49: 'orange', 50: 'broccoli', 51: 'carrot', 52: 'hot dog', 53: 'pizza', 54: 'donut', 55: 'cake', 56: 'chair', 57: 'couch', 58: 'potted plant', 59: 'bed', 60: 'dining table', 61: 'toilet', 62: 'tv', 63: 'laptop', 64: 'mouse', 65: 'remote', 66: 'keyboard', 67: 'cell phone', 68: 'microwave', 69: 'oven', 70: 'toaster', 71: 'sink', 72: 'refrigerator', 73: 'book', 74: 'clock', 75: 'vase', 76: 'scissors', 77: 'teddy bear', 78: 'hair drier', 79: 'toothbrush' } # YOLO inference function @spaces.GPU def yolo_inference(image, model_id, conf_threshold, iou_threshold, max_detection): model = YOLO(model_id) # model.to("cuda") results = model(source=image, imgsz=640, iou=iou_threshold, conf=conf_threshold, verbose=False, max_det=max_detection)[0] detections = sv.Detections.from_ultralytics(results) # Count objects counts = {} for class_id in detections.class_id: label = category_dict[class_id] if label not in counts: counts[label] = 0 counts[label] += 1 # Prepare labels for drawing boxes and counting labels = [ f"{category_dict[class_id]} {confidence:.2f}" for class_id, confidence in zip(detections.class_id, detections.confidence) ] # Annotate the image with bounding boxes annotated_image = box_annotator.annotate(image, detections=detections, labels=labels) # Convert annotated_image to OpenCV format (from PIL) annotated_image_cv = cv2.cvtColor(np.array(annotated_image), cv2.COLOR_RGB2BGR) # Draw counts on the annotated image using cv2.putText y_offset = 30 # Starting y offset for text for label, count in counts.items(): text = f"{label}: {count}" cv2.putText(annotated_image_cv, text, (10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2, cv2.LINE_AA) y_offset += 25 # Increase y offset for the next label # Convert back to PIL for Gradio output return Image.fromarray(cv2.cvtColor(annotated_image_cv, cv2.COLOR_BGR2RGB)) # Gradio app function def app(): with gr.Blocks(): with gr.Row(): with gr.Column(): image = gr.Image(type="pil", label="Image", interactive=True) model_id = gr.Dropdown(label="Model", choices=model_filenames, value=model_filenames[0] if model_filenames else "") conf_threshold = gr.Slider(label="Confidence Threshold", minimum=0.1, maximum=1.0, step=0.1, value=0.25) iou_threshold = gr.Slider(label="IoU Threshold", minimum=0.1, maximum=1.0, step=0.1, value=0.45) max_detection = gr.Slider(label="Max Detection", minimum=1, maximum=300, step=1, value=300) yolov_infer = gr.Button(value="Detect Objects") with gr.Column(): output_image = gr.Image(type="pil", label="Annotated Image", interactive=False) yolov_infer.click(fn=yolo_inference, inputs=[image, model_id, conf_threshold, iou_threshold, max_detection], outputs=[output_image]) # Main Gradio app gradio_app = gr.Blocks() with gradio_app: gr.HTML("

Object Counting using YoloV11

") gr.HTML("

Upload an image to run inference. By Kelvin

") with gr.Row(): with gr.Column(): app() # gradio_app.launch(debug=True) gradio_app.launch()